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Review

Introduction

Depressive and anxiety disorders are a major burden on 
society. Major depressive disorder (MDD) affects more 
than 20 million Americans every year and is currently the 
second leading cause of disability worldwide (Ferrari and 
others 2013; Kessler and others 2005). In addition, the 
World Health Organization predicts that depression will 
be the leading cause of disease burden globally by 2030 
(World Health Organization 2011). MDD also displays 
high comorbidity with anxiety disorders. A reported 50% 
to 60% of patients with MDD also have a history of anxi-
ety disorders that usually precede depression (Kaufman 
and Charney 2000). These findings raise the question of 
whether mood and anxiety disorders, despite the diagnos-
tic distinctions made clinically, share a common 
pathophysiology.

Since the discovery and development of these medica-
tions, depression has been associated with impairment of 
serotonergic, noradrenergic, and to a lesser extent dopa-
minergic neurotransmissions. Most drugs that are cur-
rently used to treat MDD, such as selective serotonin 

reuptake inhibitors (SSRIs; the most commonly pre-
scribed), activate serotonin neurotransmission and also 
are effective treatments for generalized anxiety (Burghardt 
and Bauer 2013; Samuels and others 2011; Schatzberg 
and Nemeroff 2009). SSRIs act as indirect agonists of 
serotonin receptors, blocking the serotonin transporter 
(SERT). After chronic SSRI treatment, serotonin (5-HT) 
is released throughout the forebrain by axons emanating 
from cell bodies located in the midbrain raphe (Barnes and 
Sharp 1999) (Figure 1A). The largely neuromodulatory 
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Abstract
Selective serotonin reuptake inhibitors are the mostly widely used treatment for major depressive disorders and also 
are prescribed for several anxiety disorders. However, similar to most antidepressants, selective serotonin reuptake 
inhibitors suffer from two major problems: They only show beneficial effects after 2 to 4 weeks and only about 
33% of patients show remission to first-line treatment. Thus, there is a considerable need for development of more 
effective antidepressants. There is a growing body of evidence supporting critical roles of 5-HT1A and 5-HT4 receptor 
subtypes in mediating successful depression treatments. In addition, appropriate activation of these receptors may be 
associated with a faster onset of the therapeutic response. This review will examine the known roles of 5-HT1A and 
5-HT4 receptors in mediating both the pathophysiology of depression and anxiety and the treatment of these mood 
disorders. At the end of the review, the role of these receptors in the regulation of adult hippocampal neurogenesis 
will also be discussed. Ultimately, we propose that novel antidepressant drugs that selectively target these serotonin 
receptors could be developed to yield improvements over current treatments for major depressive disorders.
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effects of serotonin are mediated through 14 distinct 
receptor subtypes (heteroreceptors) located postsynaptic 
to serotonergic nerve terminals (Figure 1B). In addition, 
5-HT levels are limited by two inhibitory autoreceptors 
(5-HT1A and 5-HT1B) expressed in the somatodendritic 

compartments (5-HT1A) and nerve terminals (5-HT1B) of 
the serotonergic raphe neurons (Barnes and Sharp 1999). 
However, it is largely unknown which of the 14 receptor 
subtypes actually mediate the clinical effects of SSRIs. 
While there is some evidence that 5-HT2, 5-HT3, 5-HT6, 
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Figure 1. Serotoninergic system in rodent brain. (A) The serotoninergic system is organized in nine raphe nuclei (from B1 to 
B9). B1 to B3 nuclei project axons to the spinal cord and the periphery, Dorsal raphe nuclei (DR, B6-B7), Medial Raphe nuclei 
(MR, B5, B8), and the B9 nucleus project throughout the brain. (B) Steps involved in the synthesis and release of serotonin. 
Serotonin (5-HT) synthesis depends on the uptake of tryptophan (Trp) into the presynaptic cells localized in the raphe nuclei. 
The conversion of Trp to 5-hydroxytryptophan (5-HTP) is catalyzed by tryptophan hydroxylase (TPH). 5-HTP is converted to 
5-HT by aromatic amino acid decarboxylase (AADC) before being stored in vesicles. The release of 5-HT into the synapse is 
calcium-dependent. Once released, 5-HT binds to postsynaptic receptors (e.g., 5-HT1A, 5-HT1B, 5-HT1D, 5-HT2A, 5-HT2B, 5-HT2C, 
5-HT3, 5-HT4, 5-HT5, 5-HT6, 5-HT7), pre-synaptic autoreceptors (5-HT1A, 5-HT1B, 5-HT1D), or is transported back into the 
serotonergic cell by the 5-HT transporter (SERT).
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and 5-HT7 receptor subtypes may play roles in mood dis-
orders and the treatment response (Middlemiss and others 
2002), there is a wealth of historical and recent data 
implicating 5-HT1A and 5-HT4 receptors. This review 
summarizes the roles that 5-HT1A and 5-HT4 receptors 
play in mood disorders and the mechanisms underlying 
their antidepressant action. The impact of these receptors 
on adult hippocampal neurogenesis, a phenomenon that 
may be required for some of the clinical response to anti-
depressants, is also addressed.

5-HT1A Receptor Expression Pattern 
and Signal Transduction

With the exception of the 5-HT3 receptor, which is a 
ligand-gated ion channel, all serotonin receptors are 
G-protein coupled receptors containing seven hydropho-
bic transmembrane helices, three extracellular loops, and 
three intracellular loops that activate intracellular second 
messenger cascades to yield either excitatory or inhibi-
tory responses (Hannon and Hoyer 2008) (Figure 2). The 
first evidence that there were multiple distinct 5-HT 

receptor types came in the late 1950s, when Gaddum and 
colleagues found that the effects of 5-HT in guinea pigs 
could be blocked in part by morphine and in part by 
dibenzyline (Gaddum and Picarelli 1957). By the late 
1970s, radioligand binding studies were beginning to hint 
at the diversity of the 5-HT receptor family (Hannon and 
Hoyer 2008). Then, in the late 1980s, advances in molec-
ular biology permitted cloning of the 5-HT1A receptor 
(Fargin and others 1988; Kobilka and others 1987).

5-HT1A heteroreceptors are expressed in the brain pri-
marily in the septum, hippocampus, amygdala, thalamus, 
and hypothalamus, and in these areas are mainly located 
on pyramidal and granule neurons as well as GABAergic 
interneurons (Albert and others 1996; Garcia-Garcia and 
others 2014; Tanaka and others 2012) (Figure 3). At these 
postsynaptic sites, 5-HT1A heteroreceptor activation is 
thought to primarily exert an inhibitory effect on the neu-
ronal activity induced by various neurotransmitters 
(Hannon and Hoyer 2008; Li and others 1996). By con-
trast, 5-HT1A autoreceptors are located on the soma and 
dendrites of serotonergic neurons in the dorsal and 
median raphe nuclei where they exert inhibitory control 

N-terminus

Extracellular side

Cytoplasmic sideside

ECL1

ECL2

ECL3

Rc
 5

-H
T 1A

Rc
 5

-H
T 4

N-terminus

ICL1

ICL2

ICL3

C-terminus

ICL1

ICL2

ICL3

C-terminus

ECL1
ECL2

ECL3

Figure 2. Two-dimensional representation of the 5-HT1A and the 5-HT4 receptor sequences. The 5-HT1A and the 5-HT4 
receptors are metabotropic receptors that are coupled to G proteins and contain a seven-transmembrane domain structure. 
The 5-HT1A and 5-HT4 receptors possess three intracellular loops and three extracellular loops. The amino terminus is oriented 
toward the extracellular space, whereas the carboxyl terminus (C-terminus) is oriented toward the cytoplasm. Primary 
sequences of the different isoforms are identical throughout the first 358 residues but diverge at their C-terminal end resulting in 
differential G protein coupling.
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over raphe firing rates and 5-HT release through a nega-
tive feedback mechanism (Hannon and Hoyer 2008).

5-HT1A receptors are coupled to G(i/o) type α sub-
units, which act on downstream effectors to induce inhi-
bition of neuronal firing (Albert and others 1996). 
Specifically, the G(i/o) subunit inhibits adenylyl cyclase, 
which results in a reduction in cellular levels of cyclic 
adenosine monophosphate (cAMP), the closing of cal-
cium channels, and a reduction in the intracellular cal-
cium concentration.

Activation of 5-HT1A receptors in different brain 
regions can yield at times opposing intracellular effects. 
This is because of the fact that different cell types express 
distinct Gα subunits. For example, 5-HT1A autoreceptors 
in the dorsal raphe nuclei (DRN) primarily couple to 
Giα3, while heteroreceptors in the hippocampus primar-
ily couple to Goα (Mannoury la Cour and others 2006). 
Therefore, the differential effects of 5-HT1A receptors 
are mediated both by distinct anatomical localizations 
and distinct inhibitory Gαi/o subunit couplings (Garcia-
Garcia and others 2014; Polter and Li 2010).

5-HT4 Receptor Expression Pattern 
and Signal Transduction

The 5-HT4 receptor was originally identified by its phar-
macology, which was unique among the serotonin recep-
tor subtypes known at the time. In the late 1980s there 

was speculation that a novel 5-HT receptor subtype was 
expressed in collicular and hippocampal neurons that 
stimulated adenylyl cyclase activity and increased cAMP 
production. However, this receptor subtype was insensi-
tive to known antagonists of the 5-HT1, 5-HT2, and 5-HT3 
receptor subtypes (Bockaert and others 1990; Bockaert 
and others 2004; Dumuis and others 1988). For several 
years, investigators thought that the 5-HT3 and 5-HT4 
receptors were closely related because they have similar 
pharmacological profiles. The first ligands discovered for 
the 5-HT4 receptor also had high affinity for the 5-HT3 
receptor (Bockaert and others 2004; Dumuis and others 
1988; Eglen and others 1990). The 5-HT4 receptor was 
finally recognized as a new serotonergic receptor subtype 
in 1992 and subsequently several ligands with high affin-
ity and/or selectivity for this receptor subtype were devel-
oped. In the late 1990’s, the gene encoding the 5-HT4 
receptor, which is exceptionally large and complex (700 
kb, 38 exons), was simultaneously cloned in two different 
species (Bockaert and others 2004; Claeysen and others 
1996; Gerald and others 1995). The 5-HT4 receptor pos-
sesses three intracellular loops and three extracellular 
loops. The amino terminus is in the extracellular space 
and the carboxyl terminus (C-terminus) is in the cyto-
plasm (Figure 2).

The large and complex nature of the gene encoding the 
5-HT4 receptor results in several different isoforms, gen-
erated through alternative splicing of the gene, with dis-
tinct functional properties (Bockaert and others 2004; 
Claeysen and others 1999; Pindon and others 2002). The 
sequences of the different isoforms are identical through-
out the first 358 residues, but then diverge, which results 
in differential G protein coupling (Bockaert and others 
2004; Claeysen and others 1999). In brain and peripheral 
tissues, humans have at least six distinct variants of the 
5-HT4 receptor (a, b, c, g, i, and n), whereas mice are cur-
rently thought to have only four (a, b, e, and f) (Claeysen 
and others 1999). In addition to differences in G protein 
coupling, these distinct splice variants also show differ-
ences in the intracellular loops (i3 in particular), and in 
both phosphorylation and palmitoylation of the 
C-terminus (Barthet and others 2005). The exact func-
tional roles of these distinct isoforms remain unresolved. 
However, numerous studies suggest that isoform-specific 
differences in 5-HT4 receptors and their distribution 
impact the overall coupling and regulation of the receptor 
and, in turn, the potential for 5-HT4 receptors to be targets 
for therapeutic intervention (Barthet and others 2005; 
Bohn and Schmid 2010; Marin and others 2012; Mnie-
Filali and Pineyro 2012; Vilaro and others 2005).

The 5-HT4 receptor plays important roles in the heart, 
gastrointestinal tract, adrenal gland, and urinary bladder, 
as well as in the central nervous system (Hegde  
and Eglen 1996). The development in 1993 of 

Figure 3. Localization of the 5-HT1A and 5-HT4 
receptor in the human brain. Both 5-HT1A and 5-HT4 
are heteroreceptors, but only the 5-HT1A is also an 
autoreceptor localized in the raphe nuclei. 5-HT1A and 5-HT4 
heteroreceptors are both expressed in the brain primarily 
in the hippocampus, the cortex, the globus pallidus, and the 
caudate nucleus.
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two specific radioligands for the 5-HT4 receptor, the 
antagonists [3H]-GR 113808 and [125I]-SB 207710, revo-
lutionized the study of this receptor. The usage of these 
radioligands in biochemical assays and autoradiography 
experiments permitted accurate determination of the 
regional distribution of 5-HT4 receptors in the brain 
(Grossman and others 1993). The vast majority of 5-HT4 
receptors are expressed in the hypothalamus, hippocam-
pus, nucleus accumbens, the ventral pallidum, amygdala, 
the basal ganglia, olfactory bulbs, frontal cortex, the sep-
tal area, the substantia nigra, and the fundus striatus 
(Bockaert and others 2004; Eglen and others 1995; Vilaro 
and others 1996; Vilaro and others 2005; Waeber and oth-
ers 1993) (Figure 3). More specifically, 5-HT4 receptors 
are located in somatodendritic compartments and in axon 
terminals of striatal spiny efferent neurons containing 
γ-aminobutyric acid (GABA) (Cai and others 2002; 
Compan and others 1996; King and others 2008). 5-HT4 
receptors are also expressed in glutamatergic pyramidal 
neurons in the medial prefrontal cortex and hippocampus 
(CA1, CA3) and in granule cells of the dentate gyrus 
(King and others 2008; Roychowdhury and others 1994; 
Tanaka and others 2012; Vilaro and others 2005). In the 
cortex, hippocampus, and amygdala, 5-HT4 receptors are 
expressed in cholinergic neurons where the binding of 
selective agonists can stimulate the release of acetylcho-
line (Waeber and others 1994). Furthermore, recent work 
demonstrates that 5-HT4 receptors are also expressed by 
efferent neurons of the nucleus accumbens that project to 
the lateral hypothalamus (Jean and others 2012).

Recent work has also used quantitative analyses of 
mRNA levels and polymerase chain reaction experiments 
in rat and guinea pig brains to determine the distribution 
of the 5-HT4 receptor splice variants. 5-HT4 receptor iso-
forms a, b, c, g, and n are highly expressed in the central 
nervous system (Bockaert and others 2004; Vilaro and 
others 2002; Vilaro and others 2005). Isoform (a) is 
highly expressed in the amygdala, hippocampus, nucleus 
accumbens, and caudate nucleus. Lower levels of expres-
sion are found in the small intestine, the atrium, and pitu-
itary gland. Isoform (b) appears to be the most abundant 
form in the CNS and periphery, and is expressed in the 
caudate nucleus, putamen, amygdala, pituitary gland, and 
small intestine. Isoform (g) seems to be highly expressed 
in the hypothalamus and cortex and isoform (c) is highly 
expressed in the pituitary gland and small intestine. 
Lower levels of isoform (c) are found in the caudate 
nucleus, hippocampus, and putamen. Isoform (d) is not 
expressed in the CNS, but is found in the small intestine 
(Bockaert and others 2004; Vilaro and others 2005; Vilaro 
and others 2002). The 5-HT4(n) variant, which lacks the 
alternatively spliced C-terminal exon, is widely and 
abundantly expressed in human peripheral tissues and 
brain regions including areas involved in mood disorders 
(frontal cortex, hippocampus) (Vilaro and others 2002).

Roles of 5-HT1A and 5-HT4 Receptors 
in Mood Disorders and Treatment 
Response: Evidence from Clinical 
Studies

In general, across therapeutic areas, there is often an 
overall paucity of clinical data that link the pharmacody-
namic effects of drugs to the underlying disease or to 
treatment response. However, several recent complemen-
tary studies support important roles of the 5-HT1A and 
5-HT4 receptors in the treatment of anxiety and/or depres-
sion (Lucas 2009; Lucas and others 2007; Mendez-David 
and others 2014; Pascual-Brazo and others 2012). 
Electrophysiology, behavioral, and binding studies in dif-
ferent brain regions all suggest that 5-HT1A and 5-HT4 
receptors play a role in the pathophysiology of mood dis-
orders and in the treatment response (Licht and others 
2009; Lucas 2007; Lucas and others 2009).

For 5-HT1A receptors, human genetic and imaging 
studies demonstrate that differences in receptor levels 
and regulation are associated with depression, anxiety, 
and the response to antidepressants (Le Francois and oth-
ers 2008; Lesch and Gutknecht 2004; Strobel and others 
2003). Postmortem analyses of brainstem samples from 
depressed suicide patients show a significant increase in 
levels of 5-HT1A autoreceptors compared wth non-
depressed control individuals, especially in the dorsal 
raphe nuclei (Boldrini and others 2008; Stockmeier and 
others 1998). Positron emission tomography (PET) stud-
ies have yielded some contrasting results when attempt-
ing to confirm these data, but this may be due to 
differences in the characteristics of the populations stud-
ied (Descarries and Riad 2012; Drevets and others 2007; 
Meltzer and others 2004; Parsey and others 2006b; Parsey 
and others 2010). One of the most recent PET studies, 
which used a method that made the fewest possible 
assumptions about nonspecific binding and also used a 
reference region that did not express 5-HT1A receptors, 
indeed found that 5-HT1A receptor binding potential was 
higher in antidepressant-naïve major depressive disorder 
subjects than in control subjects (Parsey and others 2010). 
Importantly, these PET findings indicate that 5-HT1A 
auto- and heteroreceptors are both affected in MDD, but 
do not decipher whether alterations in binding are causal 
or a consequence of the disorder.

A C(-1019)G polymorphism in the promoter of the 
gene encoding the 5-HT1A receptor is associated with 
several mood-related variables, including trait anxiety, 
depression, and the response to chronic antidepressant 
treatment (Fakra and others 2009; Le Francois and others 
2008). Depressed patients are more likely to be homozy-
gous for the GG genotype at the C(-1019) allele. They are 
also more likely to have higher 5-HT1A binding potential 
(Lemonde and others 2003; Parsey and others 2006b). 
Furthermore, higher 5-HT1A binding potential and the 
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GG genotype also predict remission failure to antidepres-
sant treatment (Parsey and others 2006a). Taken together, 
these clinical findings strongly implicate an essential role 
for 5-HT1A receptors in both the pathophysiology of 
mood disorders and in the response to antidepressants.

For 5-HT4 receptors, there are two studies suggesting 
a role in clinical depression. One study reported that 
polymorphisms in the splice variant region of the gene 
encoding the 5-HT4 receptor are associated with unipolar 
depression (Ohtsuki and others 2002). The second study 
revealed alterations in both 5-HT4 receptor binding and 
cAMP concentration levels in several brain regions of 
depressed violent suicide victims (Rosel and others 
2004). These results, while more preliminary than the 
collection of data from the 5-HT1A studies, also implicate 
a role for 5-HT4 receptors in mood disorders.

Roles of 5-HT1A Receptors in Mood 
Disorders and Treatment Response: 
Evidence from Preclinical Studies

In addition to the clinical studies, there is a wealth of pre-
clinical data from rodent studies that indicate a role for 
5-HT1A receptors in mood disorders and treatment 
response. Initial preclinical studies led to the hypothesis 
that 5-HT1A autoreceptors delay the therapeutic action of 
SSRIs and other drugs that increase serotonin levels 
(Blier and others 1998). More specifically, since 5-HT1A 
autoreceptors exert negative feedback inhibition in 
response to increased serotonin levels, progressive auto-
receptor desensitization may underlie the delayed onset 
of SSRIs (Blier and others 1998; Gardier and others 1996; 
Richardson-Jones and others 2010). The functional 
desensitization of 5-HT1A autoreceptors is because of 
decreased levels of G(o) proteins following chronic SSRI 
treatment (Li and others 1996), and not down-regulation 
of the receptor (Le Poul and others 1995). In rats treated 
for up to 21 days with SSRIs (either fluoxetine or parox-
etine), in vitro recordings show attenuation of the inhibi-
tory effects of 8-OH-DPAT (a 5-HT1A receptor agonist) 
on firing rates of DRN 5-HT neurons that develops over 
time (Le Poul and others 1995). Therefore, with sustained 
SSRI treatment the firing rates of DRN 5-HT neurons ini-
tially decreases because of 5-HT1A autoreceptor-mediated 
inhibition, but then recovers as the receptors desensitize, 
and is fully restored by 14 days after the initiation of the 
chronic SSRI treatment (Blier and others 1990; Czachura 
and Rasmussen 2000). Chronic treatment with 5-HT1A 
receptor agonists also produces desensitization of 
somatodendritic 5-HT1A autoreceptors as indicated by 
electrophysiological and in vivo microdialysis studies 
(Blier and de Montigny 1987; Kreiss and Lucki 1997). 
Interestingly, local administration in the dorsal raphe of 
the 5-HT1A/1B receptor antagonist, WAY-100635, or 

(±)-pindolol potentiates the effects of paroxetine on 
mouse cortical extracellular dialysate 5-HT levels 
([5-HT]ext), which suggests that the onset of action of 
antidepressant treatment is mediated by somatodendritic 
5-HT1A autoreceptors (Guilloux and others 2006). A more 
recent study suggests that 5-HT1A autoreceptor desensiti-
zation alone is not sufficient to induce a SSRI response. 
Rather, serotonergic tone, governed by intrinsic autore-
ceptor levels prior to the onset of treatment, is critical for 
establishing responsiveness and the onset of the SSRI 
response (Richardson-Jones and others 2010).

Several studies have used 5-HT1A receptor germline 
deficient mice to investigate the role of these receptors in 
anxiety and depression-related behavior. However, these 
studies are confounded by the fact that they cannot distin-
guish between the effects of auto- and heteroreceptors. 
Generally these studies have found a robust anxiety-like 
phenotype in conflict anxiety paradigms and a decrease 
in behavioral despair in the forced swim and tail suspen-
sion test (Heisler and others 1998; Klemenhagen and oth-
ers 2006; Mayorga and others 2001; Parks and others 
1998; Ramboz and others 1998). In addition, other stud-
ies have used mice that are germline deficient for 5-HT1A 
receptors to determine that 5-HT1A receptors are required 
for some (Mayorga and others 2001; Santarelli and others 
2003), but not all (Holick and others 2008), behavioral 
effects of antidepressants. More specifically, constitutive 
5-HT1A receptor knockout mice do not respond to acute 
administration of the SSRIs fluoxetine and paroxetine in 
the tail suspension test (Mayorga and others 2001), or to 
chronic treatment with fluoxetine in the novelty-sup-
pressed feeding paradigm (Santarelli and others 2003).

More recent studies have used mice engineered to spe-
cifically manipulate either auto- or heteroreceptors while 
preserving the other receptor population. One study used 
a conditional and inducible transgenic strategy to assess 
5-HT1A receptor gain-of-function by conferring temporal 
and spatial control over receptor expression. This study 
found that postsynaptic 5-HT1A receptors expressed dur-
ing a specific developmental window (from postnatal day 
5 to 21) are important for establishing normal anxiety-
like behavior in the adult mouse (Gross and others 2002). 
More specifically, spatially selective overexpression of 
postsynaptic 5-HT1A receptors in the hippocampus and 
cortex on the knockout mouse background results in mice 
that perform similarly to wild-type controls in anxiety-
related tasks. However, interpretation of these results is 
slightly confounded by the approach that used ectopic 
overexpression. More recently, another study developed a 
genetic system to independently decrease levels of the 
5-HT1A auto- and heteroreceptor populations (Richardson-
Jones and others 2011). In this study, 5-HT1A autorecep-
tors affected anxiety-like behavior, while 5-HT1A 
heteroreceptors affected behavioral despair responses. 
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Ultimately, these lines of work are in their infancy and 
future studies are necessary to investigate not only auto- 
versus heteroreceptor populations but also subpopula-
tions of heteroreceptors and the temporal roles of all of 
the different populations.

There are also pharmacological data suggesting a role 
for 5-HT1A receptors in mood disorders and the response 
to antidepressant and anxiolytic treatments (Table 1). 
5-HT1A receptor agonists induce behavioral effects that 
are comparable to antidepressant drugs (Blier 2003; 
Lucki 1991; Santarelli and others 2003). In addition, bus-
pirone and 8-OH-DPAT are 5-HT1A receptor agonists that 
reduce anxiety (Barrett and Vanover 1993; Griebel 1995; 
Tunnicliff 1991). Drugs that target 5-HT1A receptors, 
such as pindolol, have led to somewhat disappointing 
results in clinical trials (McAskill and others 1998). 
However, a large-scale clinical study found that buspi-
rone was equally effective as other drugs, such as the 
dopaminergic agent bupropion, when used as an augmen-
tation therapy for depressed patients that did not remit on 
initial treatment with a SSRI (Warden and others 2007). 
Ultimately, given the differences between auto- and het-
eroreceptors regarding their distribution and function in 
the brain, it is now clear that future treatments targeting 
5-HT1A receptors will need to specifically target only one 
of these populations of receptors to improve the antide-
pressant response.

Roles of 5-HT4 Receptors in Mood 
Disorders and Treatment Response: 
Evidence from Preclinical Studies

The understanding of the roles that 5-HT4 receptors play 
in mood disorders also mainly comes from preclinical 
studies. Animal models of anxiety/depression such as the 
Flinders sensitive line of rats, olfactory bulbectomy, glu-
cocorticoid receptor heterozygous mice (GR+/−), and 
maternal prenatal stress, show changes in 5-HT4 receptor 
density in limbic areas such as the hippocampus and the 
caudal portion of the caudate-putamen complex (Chen 
and others 2012; Licht and others 2010; Licht and others 
2009; Ridder and others 2005). Similarly, some chronic 
monoaminergic antidepressant drugs, such as fluoxetine 
or venlafaxine, but not reboxetine, decrease 5-HT4 recep-
tor density in rat brain (Vidal and others 2010).

Further studies investigated whether 5-HT4 receptor 
ligands can directly exert antidepressant-like effects or 
modify the effects of monoaminergic antidepressants 
(Table 2). In naïve rats, acute fluoxetine-induced 
decreases in immobility in the forced swim test (FST) are 
not affected by co-administration of the 5-HT4 receptor 
antagonist SB 204070A. In addition, this antagonist has 
no independent effects in the FST (Cryan and Lucki 
2000). Conversely, in a model of anxiety/depression 

based on chronic elevation of glucocorticoids, a brain 
penetrant 5-HT4 receptor antagonist (GR 125487) pre-
vents the effects of the SSRI fluoxetine in Open Field, 
Tail Suspension Test, Novelty Suppressed Feeding, and 
the Sucrose Splash test (Mendez-David and others 2014). 
These results suggest that the antidepressant-like effects 
of SSRIs are mediated in part through activation of 5-HT4 
receptors. In addition, 5-HT4 receptor activation with the 
partial agonist RS 67333 increases the effects of acute 
SSRI (paroxetine) administration on extracellular 5-HT 
levels in rat ventral hippocampus (Licht and others, 
2010). These increased 5-HT levels are observed both 
immediately and 3 days after administration (Licht and 
others 2009; Licht and others 2010). 5-HT4 receptors are 
only localized postsynaptic to serotonergic nerve termi-
nals and thus are heteroreceptors. An in vivo electrophys-
iology study demonstrated that 5-HT4 receptors exert 
excitatory influence on central 5-HT neuron activity 
(Lucas and others 2005). These data suggest that fronto-
cortical 5-HT4 receptors exert positive feedback on sero-
toninergic activity by controlling a population of DRN 
5-HT neurons.

In addition, administration of 5-HT4 receptor agonists 
induces similar molecular and behavioral changes as 
SSRI antidepressants in rodents (Bockaert and others 
2008; Lucas and others 2007; Pascual-Brazo and others 
2012). Lucas and colleagues showed that administration 
of the 5-HT4 receptor agonists RS 67333 and prucalo-
pride reduce immobility time in rats exposed to the FST 
by about 50% compared with controls, whereas citalo-
pram only reduces immobility time by about 23%. 
Additional behavioral experiments also found that the 
5-HT4 receptor agonist RS 67333 is more effective than 
citalopram in the Rat Forced Swim test and also increases 
the locomotor activity induced by olfactory bulbectomy 
(Lucas and others 2007). Depressed-like behavioral phe-
notypes observed with olfactory bulbectomy or exposure 
to chronic mild stress are reversed by 10 to 14 days of 
RS67333 treatment in rats, suggesting that RS67333 dis-
plays a faster antidepressant-like response relative to 
classical antidepressants (Lucas and others 2007). In 
addition, short periods of RS 67333 treatment results in 
antidepressant/anxiolytic-like effects in the sucrose con-
sumption test of anhedonia, in socially defeated mice 
exposed to the FST, and in the novelty suppressed feed-
ing test in rats (Gomez-Lazaro and others 2012; Pascual-
Brazo and others 2012) (Table 2).

In addition, activation of 5-HT4 receptors mediates 
several intracellular changes that are associated with the 
antidepressant drug response. These changes include 
increases in cAMP levels, protein kinase A activation, 
phosphorylation of cAMP response element–binding pro-
tein (CREB), and transcription of brain-derived neuro-
trophic factor (BDNF) (Pascual-Brazo and others 2012) 
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(Nibuya and others 1995). Therefore, mechanistic data 
also suggest that direct activation of 5-HT4 receptors 
yield antidepressant-like effects (Lucas and others 2007; 
Pascual-Brazo and others 2012; Tamburella and others 
2009). Furthermore, signaling molecules that interact 
with the 5-HT4 receptor, such as P11 (S100A10), in brain 
regions important for anxiety/depression and cognition 
such as hippocampal pyramidal cells in CA1 and the hip-
pocampal granule cells in the dentate gyrus (Egeland and 
others 2011; Warner-Schmidt and others 2009) may pro-
vide novel targets for fast-acting anxiolytic/antidepres-
sant treatments. Recent results suggest that cortical 
neurons expressing both P11 and 5-HT4 receptors regu-
late the behavioral effects of SSRIs in mice and that 
chronic treatment with fluoxetine increases 5-HT4 recep-
tor expression in these neurons (Schmidt and others 
2012). In addition, in behavioral tests such as FST and 
tail suspension test (TST), the antidepressant-like activity 
of RS67333 was abolished in P11 knockout mice (Warner-
Schmidt and others 2009). Taken together, these studies 
suggest a link between the 5-HT4 receptor and depression 
and provide an encouraging pharmacological strategy to 
obtain a faster treatment response.

Some historical studies also investigated whether 
5-HT4 receptors mediate the anxiolytic behavioral effects 
of SSRIs. However, these studies were unable to deter-
mine a clear role for 5-HT4 receptors in anxiety. For 
instance, in the light/dark choice test, diazepam induces 
dose-dependent anxiolytic-like effects in mice that are 
inhibited by 5-HT4 receptor antagonists (GR 113808, SB 
204070, and SDZ 205-557) (Costall and Naylor 1997). 
These data suggest that activation of 5-HT4 receptors 
mediate the anxiolytic effects of diazepam. In addition, 
while this study did not find any effects of 5-HT4 receptor 
antagonists alone on anxiety behavior (Costall and Naylor 
1997), others report anxiogenic effects of the 5-HT4 
receptor antagonists SB 204070, GR 113808 (Silvestre 
and others 1996) and SB 207266A (Kennett and others 
1997; Silvestre and others 1996) in the elevated plus 
maze in rats. In these studies, rats acutely treated with SB 
204070 or GR 113808 display an increase in the percent-
age of total time spent in the open arms, which is indica-
tive of anxiety-like behavior. However, while one study 
did not detect an effect of the antagonists SB 204070 and 
GR 113808 on the number of open arm entries when a 10 
minute pretest injection interval was used (Silvestre and 
others 1996), another study reported an increase in the 
percent of open arm entries after SB 204070 or SB 
207266A injections when a one hour pretest injection 
interval was used (Kennett and others 1997). 5-HT4 
receptor knockout mice do not display an anxious or 
depressed-like phenotype, but they do show an attenuated 
response to novelty that may be relevant for mood disor-
ders (Compan and others 2004). In a more recent study, 

chronic treatment with GR125487 did not affect the anx-
iety-like phenotype induced by chronic corticosterone 
treatment in mice (Mendez-David and others 2014). 
Interestingly, this study found that, while a 7-day treat-
ment with fluoxetine or RS67333 induced antidepressant-
like activity in the TST and FST, only the 5-HT4 receptor 
agonist RS67333 displayed an anxiolytic-like activity in 
the Open Field paradigm and the Elevated Plus Maze. By 
contrast, a longer duration of treatment (28 days) was 
required for fluoxetine to exert anxiolytic-like effects in 
these tests. These data support the idea that 5-HT4 recep-
tor agonists may treat anxiety and depression disorders 
with faster efficacy than traditional antidepressants.

Other investigations have found that 5-HT4 receptor 
stimulation inhibits the anxiolytic effects of diazepam (an 
enhancer of GABA response), particularly under condi-
tions of high serotonergic tone (Costall and others 1993). 
Since GABAA receptor-mediated inhibition of synaptic 
transmission is highly involved in controlling neuronal 
excitability, and GABAA receptors are implicated in the 
pathogenesis of anxiety disorders (Cai and others 2002; 
Macdonald and Olsen 1994), these data suggest that 
5-HT4 receptors may also act on GABAergic signaling in 
PFC neurons. Taken together, these studies demonstrate 
that 5-HT4 receptors are important mediators of the anti-
depressant response. Future work, involving spatially 
restricted deletions of 5-HT4 receptors or local adminis-
tration of pharmacological ligands, is necessary to more 
precisely determine the cellular and circuit-based mecha-
nisms by which 5-HT4 receptors influence behavior.

Roles of 5-HT1A and 5-HT4 Receptors 
in Mediating Adult Hippocampal 
Neurogenesis

It is well established that new neurons are continuously 
generated and incorporated into the functional neural net-
work of the mammalian adult brain through a process 
referred to as adult neurogenesis (Spalding and others 
2013). More specifically, neurogenesis occurs in the sub-
ventricular zone (SVZ) of the lateral ventricle and in the 
subgranular zone (SGZ) of the dentate gyrus in most 
adult mammals (Ming and Song 2005). Adult hippocam-
pal neurogenesis in the SGZ has gained considerable 
attention over the last decade and a half as a neural sub-
strate potentially underlying the pathophysiology of 
depression (Figure 4A and B). Most antidepressants, 
including SSRIs, are potent stimulators of adult hippo-
campal neurogenesis when administered chronically. 
Antidepressant treatment increases the proliferation of 
newborn cells as well as the survival and maturation of 
the young neurons (Malberg and others 2000; Santarelli 
and others 2003). The neurogenesis hypothesis originally 
posited that a decrease in the production of newborn 
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Figure 4. Production of new neurons in the adult dentate gyrus. (A) The hippocampal trisynaptic circuit in mouse brain. 
Neurons of the enthorinal cortex project to the dentate gyrus, with additional collaterals projecting to the CA3 subfield 
(perforant pathway). Granule cells in the dentate gyrus project to the CA3 field of the hippocampus via the mossy fiber 
pathway. The CA3 pyramidal cells project onto themselves and also to the CA1 through Schaffer collaterals. (B) Hippocampal 
neurogenesis is possible in the subgranular zone (SGZ) of the dentate gyrus of the hippocampus because of the presence of stem 
cells. These stem cells evolve into neural progenitor cells that can produce multiple cell types in the central nervous system 
such as neurons, astrocytes, oligodendrocytes, or microglial cells. In rodents, the duration of the mitotic cycle of proliferating 
precursors is approximately 12 to 24 hours, leading to the production of about 8,000 to 10,000 new neurons per day.
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dentate granule cells leads to depression, while enhanced 
neurogenesis (proliferation, survival, and maturation) is 
required for treatment of depression (Duman and others 
2000; Jacobs and others 2000; Sahay and others 2007; 
Samuels and Hen 2011). Evidence suggests that this 
hypothesis is partially correct since adult hippocampal 
neurogenesis is indeed necessary for some of the behav-
ioral effects of antidepressants (David and others 2009; 
Santarelli and others 2003; Surget and others 2008; Wang 
and others 2008). In addition, while no evidence has yet 
shown that decreasing the production of newborn dentate 
granule cells leads to depression, a large body of evidence 
also suggests that mental illness is often marked by 
diminishments in hippocampal structure and function. 
For example, patients with depression, posttraumatic 
stress disorder, schizophrenia, Alzheimer’s disease, or 
stress show decreased hippocampal volume, learning and 
memory deficits, and mood dysregulation (Nestler and 
others 2002; Sapolsky 2000). Interestingly, both 5-HT1A 
and 5-HT4 receptors are implicated in regulating adult 
hippocampal neurogenesis.

The Role of 5-HT1A Receptors in 
Mediating Adult Hippocampal 
Neurogenesis

Several studies, when taken together, suggest that activa-
tion of 5-HT1A receptors increases adult hippocampal 
neurogenesis (Table 3). The first evidence that 5-HT1A 
receptors regulated adult hippocampal neurogenesis 
came from a study assessing the effects of acute adminis-
tration of antagonists on cell proliferation in the rat den-
tate gyrus. In this study, three different 5-HT1A antagonists 
(NAN-190, p-MPPI, and WAY-100635) all resulted in an 
approximately 30% reduction in the number of 
BrdU-positive cells (Radley and Jacobs 2002), a marker 
of cell proliferation. A later study then found that the 
5-HT1A and 5-HT7 receptor agonist 8-OH-DPAT not only 
increases cell proliferation in the dentate gyrus but can 
also reverse decreases in cell proliferation induced by a 
5-HT synthesis inhibitor, para-cholorophenylalanine 
(Banasr and others 2004). Other 5-HT1A receptors partial 
agonists, buspirone or tandospirone, increases the num-
ber of newborn cells and the number of DCX-positive 
cells in the DG respectively (Grabiec and others 2009; 
Mori and others 2014). In addition, an in vitro study 
found that 5-HT1A receptors regulate self-renewal of pre-
cursor cells (Klempin and others 2010).

Another study investigated whether chronic treatment 
with various antidepressants enhances adult hippocampal 
neurogenesis in germline 5-HT1A receptor knockout mice 
(Santarelli and others 2003). Interestingly, while the 
effects of tricyclic antidepressants remain intact, the 

effects of the SSRI fluoxetine on both adult hippocampal 
neurogenesis (newborn cell proliferation) and behavior 
are abolished in 5-HT1A receptor knockout mice. Taken 
together, these data suggest that 5-HT1A receptors are 
critical mediators of the effects of SSRIs on adult hippo-
campal neurogenesis and behavior. In addition, this study 
also showed that the effects of the 5-HT1A and 5-HT7 ago-
nist 8-OH-DPAT are also abolished in 5-HT1A receptor 
knockout mice, confirming the importance of 5-HT1A 
receptors in mediating serotonin-induced enhancements 
in neurogenesis in the adult DG of the hippocampus.

Mice with decreased 5-HT1A autoreceptor levels still 
show a behavioral and neurogenic response to chronic 
antidepressants (Richardson-Jones and others 2010), sug-
gesting that 5-HT1A heteroreceptors mediate the effects of 
increased serotonin neurotransmission on neurogenesis 
and behavior. Future studies are required to determine the 
anatomical location of the 5-HT1A heteroreceptor popula-
tion that mediates these effects.

The Role of 5-HT4 Receptors in 
Mediating Adult Hippocampal 
Neurogenesis

5-HT4 receptor agonists also can induce neurogenesis in 
the hippocampus as well as in the enteric system in adult 
rodents (Ishizuka and others 2014; Liu and others 2009; 
Lucas and others 2007; Pascual-Brazo and others 2012). 
Interestingly, the beneficial effects of 5-HT4 receptor 
agonists seem to appear faster than traditional antidepres-
sants not only on behavior but also on adult hippocampal 
neurogenesis (Table 4). A recent study performed in 
naïve, non-stressed rats confirmed that 3 days of treat-
ment with the 5-HT4 receptor agonist (RS67333) signifi-
cantly enhanced neurogenesis in the subgranular zone of 
the dentate gyrus of the hippocampus, an effect that 
requires at least 2 weeks of treatment with classical anti-
depressants such as SSRIs (Pascual-Brazo and others 
2012). However, no direct evidence currently links the 
antidepressant-like behavioral effects of 5-HT4 receptor 
activation to increased adult hippocampal neurogenesis. 
A recent study found that the 5-HT4 receptor agonist 
RS67333 increases neurogenesis (proliferation and matu-
ration) to a lesser extent than fluoxetine and that the 
5-HT4 antagonist GR125487 partially blocks the neuro-
genic effects of chronic fluoxetine treatment (Mendez-
David and others 2014). Taken together, these results 
suggest that while 5-HT4 receptors contribute to the 
effects of fluoxetine on proliferation and maturation of 
newborn neurons other 5-HT receptors, such as the 
5-HT1A receptor, are also important.

Recent work also indicates that 5-HT4 receptor activa-
tion may result in antidepressant-induced dematuration 
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of mature dentate granule cells (Kobayashi and others 
2010). This study found that upregulation of 5-HT4 recep-
tor induced cAMP signaling may play an instructive role 
in the reversal of neuronal maturation induced by chronic 
antidepressant treatment (Kobayashi and others 2010). 
However, the exact mechanisms underlying this phenom-
enon will require further investigation using spatially 
restricted 5-HT4 receptor knockout mice.

Analysis of 5-HT4 receptor-mediated intracellular sig-
naling further suggests that targeting this receptor yields 
antidepressant-like effects. More specifically, 5-HT4 
receptors are G(s)-coupled G-protein coupled receptors 
that activate adenylyl cyclase, and thus increase produc-
tion of cAMP (Dumuis and others 1989; Torres and oth-
ers 1995). Increased production of cAMP activates 
protein kinase A, which in turn phosphorylates the tran-
scription factor CREB. Interestingly, chronic antidepres-
sant drug treatment activates the same signal transduction 
machinery (Nibuya and others 1996). Phosphorylation of 
CREB is thought to constitute a key step in the facilita-
tion of adult hippocampal neurogenesis as it results in 
increased BDNF levels (Castren 2014; Duman and others 
2001; Malberg and others 2000). Increased BDNF levels 
can modulate behavior, promote neurite outgrowth and 

synaptic plasticity, and enhance survival of new neurons 
(Duman and Monteggia 2006). Therefore, since activa-
tion of 5-HT4 receptors ultimately increases BDNF 
expression, it is a reasonable target to achieve antidepres-
sant-like effects. Interestingly, BDNF levels are increased 
in the rat hippocampus after only 3 days of treatment with 
the 5-HT4 receptor agonist RS67333 (Pascual-Brazo and 
others 2012). Another study found that acute administra-
tion of the 5-HT4 partial receptor agonist SL65.0155 also 
increases BDNF levels in rats (Tamburella and others 
2009). These preclinical studies, when combined with 
behavioral test results, indicate that 5-HT4 receptors pro-
vide a putative target for faster acting antidepressants.

Conclusions

Taken together, much evidence indicates that SSRIs 
mediate some of their effects through both 5-HT1A and 
5-HT4 receptors, thus being reasonable targets for future 
antidepressant drug development. However, 5-HT1A 
receptors in different anatomical locations show distinct 
brain functions, and therefore it may be necessary to 
selectively target subpopulations of these receptors to 
attain the optimal therapeutic outcome. In addition, the 

Table 3. Effects of 5-HT1A Receptor Ligands on Proliferation and Maturation of Newborn Neurons in the Adult Hippocampus.

References Name
Pharmacological 

Properties Doses Species Steps Effects

Radley and Jacobs 
(2002)

NAN-190: 1-(2-methoxyphenyl)-4-
[4-(2-phthalimido)butyl] piperazine 
hydrobromide

Antagonists 2.5 mg/kg 2.5 hours 
before sacrifice

Rats Proliferation Decreases the number 
of newborn cells in 
the SGZ of DG

p-MPPI: 4-iodo-N-[2-[4-(methoxyphenyl)-
1-piperazinyl]ethyl]-N-2-pyridinyl-
benzamide

10 mg/kg 2.5 hours 
before sacrifice

WAY-100635: (N-(2-[4-(2-
methoxyphenyl)-1-piperazinyl]ethyl)-N-
(2-pyridinyl) cyclohexanecarboxamide 
trihydrochloride

5 mg/kg 2.5 hours 
before sacrifice

Santarelli and others 
(2003)

8-OH-DPAT: 8-Hydroxy-2-
dipropylaminotetralin

Agonist 1 mg/kg/day for 28 days Mice Proliferation Increases the number 
of newborn cells in 
the SGZ of DG

Banasr and others 
(2004)

8-OH-DPAT: 8-hydroxy-2-
dipropylaminotetralin

Agonist 1 mg/kg 2.5 hours 
before sacrifice

Rats Proliferation Increases the number 
of newborn cells in 
the SGZ of DG

Grabiec and others 
(2009)

Buspirone Partial agonist 3 mg/kg 3 hours before 
sacrifice

Opossums Proliferation Increases the number 
of newborn cells in 
the SGZ of DG

Klempin and others 
(2010)

8-OH-DPAT: 8-hydroxy-2-
dipropylaminotetralin

Agonist 1 mg/kg 1 day before 
sacrifice

Mice Proliferation Increases the number 
of newborn cells in 
the SGZ of DG

1 mg/kg for 7 days No effect
WAY-100635: (N-(2-[4-(2-

methoxyphenyl)-1-piperazinyl]ethyl)-N-
(2-pyridinyl) cyclohexanecarboxamide 
trihydrochloride

Antagonist 10 mg/kg 1 day before 
sacrifice

No effect

10 mg/kg for 7 days Decreases the number 
of newborn cells in 
the SGZ of DG

Mori and others 
(2014)

Tandospirone Partial agonist 1 or 10 mg/kg for 10 
days

Rats Maturation Increases the number 
of DCX-positive cells 
in the DG

DCX = doublecortin; DG = dentate gyrus; SGZ = subgranular zone.
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localization of 5-HT4 receptors may also be a critical con-
sideration for drug targeting since these receptors also 
play important roles outside the central nervous system. 
More specifically, 5-HT4 receptors are also expressed in 
cardiac and intestinal tissues and administration of 5-HT4 
receptor agonists can lead to arrhythmia (Ferrari and oth-
ers 2013). Thus, future antidepressants should target 
either specific anatomical populations of 5-HT1A and 
5-HT4 receptors or downstream effectors. To this end, 
recently developed 5-HT1A receptor agonists seem to 
preferentially target 5-HT1A receptor subpopulations 
(Garcia-Garcia and others 2014). If the appropriate 
5-HT1A heteroreceptor population can be targeted, then 
these agonists may be faster acting antidepressants that 
avoid the delays caused by autoreceptor-mediated feed-
back inhibition of serotonergic tone observed following 
chronic administration of SSRIs. In addition, signaling 
molecules that interact with the 5-HT4 receptor, such as 

P11, may also represent novel targets for faster-acting 
antidepressant activity (Egeland and others 2011; Warner-
Schmidt and others 2009). Perhaps novel multitarget-
directed ligands with both 5-HT1A and 5-HT4 agonistic 
properties could also yield more effective 
antidepressants.
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Table 4. Effects of 5-HT4 Receptor Ligands on Proliferation, Maturation, and Survival of Newborn Neurons in the Adult 
Hippocampus.

References Name
Pharmacological 

Properties Doses Species Steps Effects

Lucas and others 
(2007)

RS 67333: (1-[4-amino-5-chloro-
2-methoxyphenyl]-3-[1-butyl-
4-piperidinyl]-1-propanone) 
versus citalopram (77-300 µg/
kg i.v.)

Agonist 1.5 mg/kg, osmotic 
mini-pumps during 
3 days

Rats Proliferation Increases the number of 
newborn cells in the 
SGZ of DG

Tamburella and others 
(2009)

SL 65.0155: [5-(8-amino-7-chloro-
2,3-dihydro-1,4-benzo-dioxin-
5-yl)-3-[1-(2-phenylethyl)-4-
piperidinyl]-1,3,4-oxadiazol-2 
(3H)-one-monohydrochloride]

Partial agonist 0.1, 0.5 and 1 mg/kg, 
i.p. during 1 day

Rats Survival Increases Bcl-2 
expression after acute 
administration

Pascual-Brazo and 
others (2012)

RS 67333: (1-[4-amino-5-chloro-
2-methoxyphenyl]-3-[1-butyl-4-
piperidinyl]-1-propanone)versus 
fluoxetine (10 mg/kg/d)

Agonist 1.5 mg/kg, i.p. during 
3/7 days

Rats Proliferation Increases the number of 
newborn cells in the 
SGZ of DG at 3/7 days 
and up-regulate some 
neuroplasticity-related 
markers as BDNF, 
CREB, and AKT

Ishizuka and others 
(2014)

GR 113808: 
1-(2-methylsulfonylaminoethyl-
4-piperidinyl)methyl-1-methyl-
1H-indole-3-carboxylate

Antagonist 1 µM during 30 min 
and 40 hours later 
during 30 minutes for 
2 days

Mouse induced 
pluripotent 
stem cells

Differentiation Blocks all-trans retinoic 
acid-induced neural 
differentiation of 
mouse iPS cells into 
NPC

Mendez-David and 
others (2014)

RS 67333: (1-[4-amino-5-chloro-
2-methoxyphenyl]-3-[1-butyl-
4-piperidinyl]-1-propanone) 
versus fluoxetine (18 mg/kg/d)

Agonist 1.5 mg/kg, osmotic 
mini-pumps during 
7 days

Cort-treated 
mice

Proliferation Increases by 51% the 
number of newborn 
cells in the SGZ of DG

Maturation Increases by 44% the 
maturation index

Morphology Increases the dendritic 
length and the 
number of dendritic 
intersections

GR 125487: 
[1-[2-[(methylsulfonyl)amino]
ethyl]-4-piperidinyl]methyl 
5-fluoro-2-methoxy-1H-indole-
3-carboxylate

Antagonist 1 mg/kg, osmotic mini-
pumps during 7 days

Cort-treated 
mice

Proliferation/
maturation/
morphology

No effecta

Bcl-2 = B-cell lymphoma 2; BDNF = brain-derived neurotrophic factor; CREB = cAMP response element–binding protein; DG = dentate gyrus; i.p. = intraperitoneally; 
iPS = induced pluripotent stem; i.v. = intravenously; SGZ = subgranular zone.
aPartially blocks the effects of chronic fluoxetine-induced increase in proliferation of newborn cells and increase in maturation.
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