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A B S T R A C T

Endocrine-disrupting compounds (EDCs) are common contaminants in our environment that interfere with ty-
pical endocrine function. EDCs can act on steroid and nuclear receptors or alter hormone production. One
particular EDC of critical concern is bisphenol A (BPA) due to its potential harm during the perinatal period of
development. Previous studies suggest that perinatal exposure to BPA alters several neurotransmitter systems
and disrupts behaviors associated with depression and anxiety in the rodent offspring later in life. Thus, dys-
regulation in neurotransmission may translate to behavioral phenotypes observed in mood and arousal. Many of
the systems disrupted by BPA also overlap with the stress system, although little evidence exists on the effects of
perinatal BPA exposure in relation to stress and behavior. The purpose of this review is to explore studies
involved in perinatal BPA exposure and the stress response at neurochemical and behavioral endpoints.
Although more research is needed, we suggest that perinatal BPA exposure is likely inducing variations in
behavioral phenotypes that modulate their action through dysregulation of neurotransmitter systems sensitive to
stress and endocrine disruption.

1. Introduction

Endocrine disrupting compounds (EDCs) are chemicals that disrupt
typical endocrine function (Bergman et al., 2013; Zoeller et al., 2012).
Exposure to EDCs interferes with the body's ability to actively regulate
the endocrine system resulting in adverse developmental, reproductive,
and neurological effects. EDCs are not a uniform class of chemicals and
they alter the body in a variety of ways. They can dysregulate function
by interacting with nuclear receptors, including steroid and xenobiotic
receptors. EDCs can also impact estrogen signaling by influencing two
estrogen receptors (ER): ERα and ERβ. Moreover, EDCs can interfere
with hormone action by disrupting hormone transport, binding to
hormone receptors (to apply direct agonistic or antagonistic effects),
employing indirect action via transcription factors, and intervening
with enzymes essential for hormone synthesis or degradation (Shanle
and Xu, 2010; Zoeller et al., 2012). One of the most examined EDCs,
bisphenol A (BPA), can activate transcription factors such as estrogen
receptor (ER) α/β, estrogen-related receptor gamma (ERRγ), and per-
oxisome proliferator-activated receptor gamma (PPARγ). Other EDCs
such as organophosphate flame retardants and polybrominated di-
phenyl ethers are known to act on steroid and nuclear receptors

including ERα, androgen receptors, and PPARγ.
There are many classes of known or suspected EDCs. These chemi-

cals, both natural and synthetic, are ubiquitous in the work and home
environment and are commonly present in fungicides, herbicides, me-
tals, phenols, plasticizers, insecticides, soy products, polycyclic aro-
matic hydrocarbons, and flame retardants. Many of these compounds
found in pharmaceuticals, pesticides, and industrial chemicals, can
produce estrogen-like responses (Giesy et al., 2002). Humans are ex-
posed to these chemicals daily through everyday products, such as
clothing, cosmetics, soil, dust, furniture, toys, and plastic bottles
(Colborn et al., 1993; Guo et al., 2014; Harvey and Darbre, 2004). For
example, the constituents of flame retardants are not completely bound
to the products that contain them and can leach out into the environ-
ment. Consequently, flame retardants accumulate in household and
workplace dust where they are inadvertently ingested by humans
(Watkins et al., 2011).

One critical concern related to EDCs is the harm of exposure during
the developmental period. Maternal EDC exposure can disrupt typical
gonadal hormone surges in offspring during the perinatal period of
development. From the known literature in rodents, during critical
organizational stages of development, testosterone and its metabolites
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promote differential development of male and female brains (De Bellis
et al., 2001; Hutchison, 1997; Phoenix et al., 1959). The sex-de-
termining region of the Y chromosome establishes the development of
the fetal testes, and testosterone generated by the testes is directly
converted to estradiol in the brain by aromatase (Arnold and Gorski,
1984; McCarthy et al., 2009; Morris et al., 2004; Phoenix et al., 1959).
Subsequently, through estrogen receptor action, it masculinizes and
defeminizes the neural substrate, setting the stage for sex differences
while also leaving these systems vulnerable to endocrine disruption by
EDCs (Arnold and Gorski, 1984; McCarthy et al., 2009; Morris et al.,
2004; Phoenix et al., 1959). The introduction of xenobiotic estrogens
during this period may induce permanent changes in development,
ultimately reorganizing the developing embryo.

Unfortunately, because EDCs are consistently present in the en-
vironment, exposure starts in utero (Colborn et al., 1993; Guo et al.,
2014; Harvey and Darbre, 2004). During critical developmental win-
dows, hormones have control of rapid cell division and differentiation
(Newbold, 1995; Schug et al., 2011). Any disruption of this process can
result in detrimental alterations of the developing tissue (Newbold,
1995; Schug et al., 2011). Underscoring this concept is evidence that
EDCs are found in amniotic fluid (Foster et al., 2000; Geer et al., 2015;
Vilahur et al., 2014). EDC exposure persists throughout childhood and
beyond (Buttke et al., 2012). For example, flame retardant exposure in
children occurs through frequent hand-to-mouth or object-to-mouth
contact around contaminated soil or dust (Xue et al., 2007). Recent
research observed elevated levels of tris (1,3-dichloro-2-propyl) phos-
phate (TDCPP), a common flame retardant, in the urine of children
(Hoffman et al., 2015). Thus, the abundance of EDCs in our environ-
ment likely impacts human development and warrants further in-
vestigation.

Of the multitude of literature on EDCs, a subset of this research
centers on perinatal exposure. Within this domain, much of the focus
has been directed towards BPA. This increase in research is in concert
with a growing public health concern. Close to 95% of humans have
detectable levels of BPA in their bodies (Calafat et al., 2007; Shankar
et al., 2012). This ubiquitous BPA exposure in human populations may
have begun early in life as it is known to be transmitted to the fetus
through the placenta (Takahashi and Oishi, 2000) and neonates
through lactation (Snyder et al., 2000), signifying the feasibility for
considerable gestational exposure. Indeed, BPA has been found in fetal
plasma (Ikezuki et al., 2002) and liver (Nahar et al., 2013), as well as
amniotic fluid (Engel et al., 2006).

To date, agreement in the scientific community regarding BPA im-
pairment of human health remains controversial (Abbasi, 2018; Metz,
2016; Vandenberg et al., 2009; Vogel, 2009; Vom Saal and Hughes,
2005). Some studies reveal negative associations between BPA and
health (Braun et al., 2011; Braun et al., 2009; Evans et al., 2014; Harley
et al., 2013; Hong et al., 2013; Lang et al., 2008; Perera et al., 2016;
Perera et al., 2012); others have not yielded such links (Ashby et al.,
1999; Cagen et al., 1999; Willhite et al., 2008). Some have concluded
that there are no significant risks of BPA to human health, yet publicly
funded studies overwhelmingly declare that BPA is a concern. This has
led to much disagreement on how much of a public health concern BPA
demands. Emerging evidence suggests that BPA evokes a non-mono-
tonic dose response (Vandenberg, 2014), refuting typical dose-response
patterns such that an increasing dose coincides with an increasing effect
(monotonic). Thus, the consistency of testing mechanisms has come
under scrutiny. For instance, investigators have administered BPA or-
ally and others through subcutaneous injections, moreover species,
strain, concentration, and exposure windows have all differed. In order
to undertake this controversy on BPA safety and to bring together
academics and federal regulators, the United States formed the Con-
sortium Linking Academic and Regulatory Insights on BPA Toxicity
(CLARITY-BPA) (Heindel et al., 2015). CLARITY-BPA was distinctively
designed as a collaborative research program to resolve controversies
related to the design and interpretation of potential health effects of low

dose BPA exposures (Birnbaum et al., 2012; Heindel et al., 2015; Schug
et al., 2013). All animals are bred, housed, and treated at the National
Center for Toxicological Research, and experimenters follow vigorous
protocols such as, blinding, controlling for litter effects, and the use of a
reference estrogen in an effort to advance rigor and reproducibility.
Given these efforts, uncertainty remains regarding effects from BPA
exposure. It appears that the core studies detected few effects at low
BPA doses; however, grantee research indeed indicates low dose BPA
effects.

Despite the controversy, BPA is considered an estrogen-mimicking
type of endocrine disruptor. Previous literature suggests that although
BPA has weak estrogenic activity, through its low binding affinity to
ERα and ERβ nuclear estrogen receptors, it can dysregulate endocrine
signaling pathways during the perinatal period (Alonso-Magdalena
et al., 2012; Kuiper et al., 1998). Also, perinatal BPA exposure has been
associated with alterations in estrogen receptor number (Khurana et al.,
2000), sexually dimorphic brain areas (Funabashi et al., 2004;
Kundakovic et al., 2013), and behavioral endpoints (Braun et al., 2011;
Braun et al., 2009; Evans et al., 2014; Harley et al., 2013; Hong et al.,
2013; Perera et al., 2016; Perera et al., 2012). Although BPA can affect
other systems, including androgen signaling (Lee et al., 2003) and
thyroid function (Zoeller et al., 2005), and crosstalk does exist between
these systems, this review focuses on the influence of estrogen sig-
naling. In addition, because estrogens are heavily associated with re-
sponses to stress, our review will explore the relationship of BPA on
stress-related neurotransmitter systems and their associated behaviors.
Lastly, because dysregulation in stress neurocircuitry is often sex-spe-
cific, differences in males and females are explored in detail.

2. Stress system

Stress-related psychiatric disorders, such as post-traumatic stress
disorder (PTSD), generalized anxiety disorder, and major depression,
commonly affect many individuals worldwide (Kessler et al., 2005).
Stress is an underlying precipitating factor for these disorders, as
stressful life events are associated with their onset and severity
(Association, 2013; Breslau, 2009). For example, depression is asso-
ciated with stress intensity; the more an individual undergoes stressful
life events, the greater expectancy of developing depression (Kendler
et al., 1999). Also, women appear more vulnerable to these disorders, as
they occur twice as frequently in women than in men (Breslau, 2002;
Bromet et al., 2011; Kessler, 2003; Kessler et al., 1994; Tolin and Foa,
2006; Weissman et al., 1996). This sex difference is not only observed in
the United States but documented worldwide (Seedat et al., 2009).

One way the body responds to stress is peripherally (Kaltsas and
Chrousos, 2007; Owens and Nemeroff, 1991). In response to stress, the
41- amino-acid neuropeptide, corticotropin-releasing factor (CRF), also
called corticotropin-releasing hormone, activates the hypothalamic-pi-
tuitary-adrenal (HPA) axis (Kaltsas and Chrousos, 2007; Owens and
Nemeroff, 1991). The paraventricular nucleus of the hypothalamus
(PVN) releases CRF into the anterior pituitary (Kaltsas and Chrousos,
2007; Swanson et al., 1983). The pituitary secretes adrenocorticotropic
hormone into circulation, stimulating glucocorticoid release from the
adrenal glands (Rivier and Vale, 1983; Vale et al., 1981). Glucocorti-
coids mobilize stored energy through glucose metabolism, increasing
chances of survival during a stressful event (Traustadóttir et al., 2005).
The HPA axis is a negative feedback system such that glucocorticoid
feedback to the PVN and hippocampus suppresses activation (De Kloet
and Reul, 1987; Smith and Vale, 2006). Specifically, glucocorticoids
feedback on the low-affinity glucocorticoid receptors (GR) and high-
affinity mineralocorticoid receptors. HPA axis dysfunction is associated
with the development of many stress-related psychiatric disorders such
as anxiety and depression (Kocsis et al., 1985).

Another way the body reacts to stress is centrally (Kaltsas and
Chrousos, 2007; Owens and Nemeroff, 1991). CRF also acts as a neu-
romodulator of synaptic transmission at pre- and postsynaptic sites
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within the brain (Lowry and Moore, 2006; Owens and Nemeroff, 1991).
During stress, CRF is released or co-released with other neuro-
transmitters that regulate systems associated with mood and arousal
(Gallagher et al., 2008; Owens and Nemeroff, 1991). Several neuro-
transmitter systems are impacted by the stress response. Many of the
systems that are directly involved in affective disorders are the ser-
otonergic, noradrenergic, and GABAergic systems (Pezze and Feldon,
2004; Price et al., 1998; Stanford, 1995). Disruptions in these systems
translate to deficits in anxiety and depressive endpoints.

The CRF system can become dysregulated (Bangasser and
Wiersielis, 2018; Salvatore et al., 2018; Wiersielis et al., 2016). Indeed,
the development of stress-related psychiatric disorders is associated
with this dysregulation, as increased CRF concentrations are found in
individuals with these disorders (Bremner et al., 1997; Gold et al.,
1996; Gold and Chrousos, 1985; Nemeroff et al., 1991; Nemeroff et al.,
1984). For example, Vietnam veterans with combat-related PTSD had
elevated levels of CRF in their cerebral spinal fluid (CSF) compared to
controls (Bremner et al., 1997). Additionally, Nemeroff et al. (1991)
measured CRF concentrations in the CSF of depressed individuals be-
fore and after electroconvulsive therapy (ECT), a treatment for de-
pression. Elevated levels of CRF in depressed individuals were observed
before ECT, whereas after ECT there was a significant reduction in CRF
concentrations (Nemeroff et al., 1991). Thus, dysregulation of these
systems by either stress or BPA would, therefore, affect phenotypic
behavior connected with these disorders.

3. BPA effect on behavioral phenotypes

Dysregulation in the stress systems is intricately linked to the dis-
ruption of behavioral phenotypes involved in anxiety and depression.
Perinatal BPA exposure appears to be related to these behavioral end-
points. For example, in human populations, perinatal and childhood
exposure to BPA is linked to neurobehavioral changes in anxiety and
depressive symptoms later in life (Braun et al., 2011; Braun et al., 2009;
Evans et al., 2014; Harley et al., 2013; Hong et al., 2013; Perera et al.,
2016; Perera et al., 2012; Roen et al., 2015). It is critical that we
identify stress-related behavioral endpoints in order to pinpoint un-
derlying alterations in neuroanatomical development in the BPA-ex-
posed.

3.1. Anxiety phenotypes

Maladaptive stress responses often lead to disruptions in anxiety
phenotypes. Clinically, prenatal exposure to BPA is related to an in-
crease in anxiety in children (Braun et al., 2011; Braun et al., 2009;
Perera et al., 2016; Perera et al., 2012; Roen et al., 2015). Many studies
have detected a sex difference, such that males (Perera et al., 2016;
Perera et al., 2012; Roen et al., 2015) or females (Braun et al., 2011;
Braun et al., 2009) are disproportionately affected. For example, one
study that quantified BPA in the urine of pregnant women during the
third trimester and tested male and female offspring between 10 and
12 years of age detected significant positive associations between pre-
natal BPA exposure and anxiety symptoms only in boys (Perera et al.,
2016). In contrast, another study collected the urine of mothers at ge-
stational weeks 16, 26, as well as at birth, and evaluated behavior in 2-
year-old male and female offspring (Braun et al., 2009). Compared with
gestational week 26 and birth, BPA concentrations at 16 weeks had a
strong association with anxiety scores among all offspring, but females
exhibited a stronger association, suggesting a critical window of ex-
posure (Braun et al., 2009). The sex discrepancies in these studies may
be attributed to several factors; however, differences are most likely
due to time of exposure (differences in trimesters) and age at testing (12
or 2 years of age). Because these and other studies report such differ-
ences in males (Perera et al., 2016; Perera et al., 2012; Roen et al.,
2015) and females (Braun et al., 2011; Braun et al., 2009), biases to a
particular sex cannot be established.

In animal models, a growing body of BPA exposure research yields
conflicting results in anxiety-like behavior. To start, anxiogenic effects
are seen from early-life BPA exposure in rodent models and in some
cases in both sexes (Farabollini et al., 1999; Gioiosa et al., 2013;
Kundakovic et al., 2013; Matsuda et al., 2012; Patisaul and Bateman,
2008; Patisaul et al., 2012; Poimenova et al., 2010; Xu et al., 2012;
Zhang et al., 2009; Zhou et al., 2015). Some of this literature suggests a
male sensitivity to perinatal BPA exposure. Work by Patisaul and
Bateman (2008) evaluated male Long-Evans rats exposed to BPA
(50 μg/kg/bw s.c.) from postnatal day (PD) 0 to PD 3. During the period
from PD 56 to PD 61, rats were tested on the elevated plus maze (EPM)
(5 mins), a well-established behavioral test that investigates the psy-
chological and neurochemical basis of anxiety (Dawson and
Tricklebank, 1995). BPA-treated males spent less time and made fewer
entries in the open arms compared to the vehicle-treated controls, in-
dicating an anxiety-like state (Patisaul and Bateman, 2008). Un-
fortunately, because females were not included in this study, sex
comparisons could not be made. Additional work by this group
(Patisaul et al., 2012) did investigate both males and females; however,
strain, mode of administration, exposure window, and age at EPM
testing differed. Wistar rats were exposed to BPA in drinking water
(1 mg/L) or the positive control ethinyl estradiol (50 μg/L) from ge-
stational day (GD) 6 to PD 40. The EPM (5 min) was administered prior
to puberty during PDs 24–28; (Patisaul et al., 2012). Compared to
control males, BPA-exposed juvenile males exhibited a reduction in the
percentage of open arm entries, indicative of an anxiety-like state. No
differences were detected in females on this measure, suggesting BPA-
induced anxiety only in males.

As additional literature is explored, partiality towards a sex bias is
less clear. For example, one particular study (Xu et al., 2012) reports an
anxiogenic phenotype in both sexes but may support an increased an-
xiety phenotype in females depending on dose and exposure window.
To this end, male and female mice exposed to BPA (0.4 or 4 mg/kg/d,
oral administration) during either the gestational (GD 7 to GD 20) or
lactational (PD 1 to PD 14) period largely show anxiogenic effects on a
variety of behavioral tests (Xu et al., 2012). Male and ovariectomized
females were tested on PD 56. Both males and females with gestational
BPA exposure exhibited fewer light chamber entries, an anxiety phe-
notype, in a 5-min light/dark box (LDB), another conventional test for
the assessment of anxiety-like behavior (Bourin and Hascoët, 2003).
Females saw a reduction in light chamber entries at both BPA doses,
whereas males were affected only at the 0.4 BPA dose. Interestingly,
light chamber time decreased in females only at the high BPA dose, yet
male time decreased at both doses. However, when considering lacta-
tional BPA exposure on these LDB measures, females displayed reduced
time at both doses, and fewer entries at only the higher BPA dose; no
effects on time or entries at any dose were observed in males (Xu et al.,
2012). This suggests that at least in the LDB test, gestational BPA ex-
posure is effective in producing an anxiogenic response in both sexes;
however, lactational BPA exposure only affected females suggesting
they are more sensitive to this treatment (Xu et al., 2012). Notably, this
sensitivity is not influenced by circulating ovarian hormones, indicating
an organizational influence. Another widespread anxiety assessment,
the open field test (OFT) (5 min) (Gould et al., 2009), was utilized in
this work (Xu et al., 2012). High-dosed BPA gestational females were
the only cohort that revealed a difference, exhibiting increased
grooming frequency, often considered a self-soothing behavior (Spruijt
et al., 1992). Yet, other behavioral results from this study are mixed.
For example, in the EPM, open arm entries were reduced at every dose
and exposure window in both sexes, except for in males that received a
low lactational dose of BPA. Yet, open arm time yielded reductions for
females at all doses and exposure windows, whereas males had no al-
terations in any condition (Xu et al., 2012).

Other research has documented a sensitivity in females; however,
the strain, BPA dose, and exposure window differed. Pregnant BALB/c
mice were orally dosed with BPA (2, 20, or 200 μg/kg/day) throughout
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the total gestational period, and both male and female offspring were
tested at PD 60 (Kundakovic et al., 2013). Interestingly, in a 10-min
OFT, BPA exposure decreased center zone time in females and increased
it in males, both in a linear, dose-dependent manner, suggesting an
anxiogenic and anxiolytic response, respectively (Kundakovic et al.,
2013). However, because there were similar directional sex differences
in locomotor activity, represented by distance traveled, it seems likely
that results could be attributed to either hypo- or hyperactivity, rather
than an anxiety phenotype. Moreover, in contrast to the prior study (Xu
et al., 2012), OFT duration differed (5 min (Xu et al., 2012) vs. 10 min
(Kundakovic et al., 2013)). Duration of the OFT can affect outcome, as
rodents preferably explore a novel environment during the first few
minutes, a time period best suited to capture an anxiety-like state
(Crawley, 1985).

Complicating matters, several reports have demonstrated anxiolytic
behavior from perinatal BPA exposure in both male and female rodents
(Farabollini et al., 1999; Fujimoto et al., 2013; Kuwahara et al., 2014;
Tian et al., 2010; Zhang et al., 2009). Tian et al. (2010) evaluated 5-
week-old male and female mice (analyzed together) exposed to BPA (0,
100, or 500 μg/kg/day; oral administration) from GD 7 to PD 36. BPA-
exposed mice that received the 500-μg dose exhibited a greater per-
centage of open arm time in the EPM (5 min), indicating an anxiolytic
effect (Tian et al., 2010). No differences were observed in the percen-
tage of open arm entries at any dose. The authors also detected a dif-
ference at the 100-μg dose only in the OFT (10 min); an increase in
distance traveled in the center zone. They attribute this outcome to an
anxiolytic-like state; however, distance traveled in the center zone has
also been considered an exploratory/locomotor activity assessment
(Albayram et al., 2017; Ferris et al., 2010; Xie et al., 2017). Thus, it
appears that high doses of perinatal BPA exposure were enough to
produce an anxiolytic profile in juveniles, but sex differences were not
evaluated.

Assessments in adult rodents are also conflicting. One particular
study evaluated adult (85-day-old) male and female Sprague-Dawley
rats exposed to perinatal BPA (40 and 400 μg/kg/day; oral adminis-
tration) (Farabollini et al., 1999). In particular, male offspring that
were treated at both BPA doses exhibited an increase in the percentage
of open arm entries in the EPM (5 min) compared to same-sex controls,
suggesting an anxiolytic phenotype (Farabollini et al., 1999). No effects
were observed in females at either BPA dose (Farabollini et al., 1999).
Inverse sex effects have also been reported in adult (80-day-old)
Sprague-Dawley rats, although at a much lower dosage and a different
mode of administration. Male and diestrus female offspring of dams
exposed to BPA (2 μg/kg/day; s.c.) from GD 10 to PD 7 were tested on
the OFT and LDB (both 5 min) (Chen et al., 2014). Compared to vehicle,
BPA-exposed females had greater amounts of time in both the center of
the OFT and the light zone of the LDB, whereas no differences were
detected in males (Chen et al., 2014). These contrary reports are most
likely due to the varying differences in BPA concentration.

Although the literature is conflicting, in both human and animal
models evidence clearly suggests a deregulatory relationship between
perinatal BPA exposure and anxiety behavior. In humans, it appears
that anxiety differences in males and females may be attributed to the
type of psychological testing or window of exposure. Unfortunately,
rodent models do not seem to provide more clarity; BPA dose, length of
exposure, age at testing, strain, and mode of administration appear to
affect outcomes. Different BPA-induced anxious states potentially de-
pend on sex, thus additional research is needed to tease out a potential
sex effect.

3.2. Depressive phenotypes

A dysregulated stress response is also associated with disturbances
in depressive phenotypes. Moreover, major depressive disorder often
has comorbidity with anxiety (Breslau et al., 1995), so it is important to
evaluate them in tandem. BPA studies that focus on models of

depressive behavior seem more limited in investigation. Yet, in humans,
it appears that children who have had early-life exposure to BPA are
more likely to develop depressive symptoms, with what may be a
greater susceptibility in males (Harley et al., 2013; Perera et al., 2016;
Perera et al., 2012; Roen et al., 2015). In a study examining major
depressive disorder, which includes emotionally reactive behavior as a
key feature (Bylsma et al., 2008), urine samples from expectant mothers
between 24 and 40 weeks of pregnancy, as well as from their offspring
between the ages of 3 and 4 years were tested (Perera et al., 2012).
Gestational BPA exposure was highly associated with emotionally re-
active behavior in boys (Perera et al., 2012). Interestingly, a negative
association between BPA exposure and depressive behavior was ob-
served in girls, suggesting males are disproportionately affected (Perera
et al., 2012). Other work supports a male bias in BPA-induced de-
pressive behavior. Harley and colleagues (Harley et al., 2013) measured
BPA in the urine of expectant mothers during pregnancy (between ~13
and ~26 weeks), as well as BPA in the urine of their children at 5 years
of age. Child behavior was measured both by mother and teacher re-
ports at the age of 7. Increased BPA concentrations in boys were linked
to greater symptoms of depression reported by both groups, yet no such
association was observed in girls (Harley et al., 2013). Research fol-
lowing up to the aforementioned work by Perera et al. (2012) mon-
itored the gestationally BPA-exposed offspring to the ages of 10–12
(Perera et al., 2016). Outcomes show similar disruptions in depressive
symptoms only in boys, as evidenced by positive associations between
self-reported symptoms and prenatal BPA urinary concentrations
(Perera et al., 2016). Collectively, these studies suggest persistent, long-
lasting BPA-induced depressive symptoms only in boys, up to the age of
12.

Other literature, albeit limited, does refute these findings and ob-
serves disruptions in BPA-exposed girls (Braun et al., 2011; Braun et al.,
2009). Braun et al. (2009) collected urine samples in pregnant women
(GD 16, GD 26, and at birth). Prenatal BPA concentrations were asso-
ciated with externalizing behavior, a key feature of depression (Angold
and Costello, 2001), in 2-year-old girls (Braun et al., 2009). Moreover,
the authors conducted a follow-up study at 3 years of age in these
children and found that the previously detected associations remained
in these girls (Braun et al., 2011). To the best of our knowledge, there is
a lack of literature that identifies depressive symptoms in BPA-exposed
females after this time point, suggesting female vulnerability only at a
very young age. Clearly, incongruent results in the clinical literature are
present, but males appear disproportionately affected.

Work in animal models in this domain is controversial. Broadly, the
literature does support a harmful relationship between perinatal BPA
exposure and depressive phenotypes that are detected in humans
(Fujimoto et al., 2006; Xu et al., 2015; Xu et al., 2012; Xu et al., 2011).
The aforementioned work by Xu et al. (2012), also examined depressive
phenotypes. Briefly, male and ovariectomized female mice (56 days
old) were exposed to BPA (0.4 or 4 mg/kg/d) during gestational (GD 7
to GD 20) or lactational (PD 1 to PD 14) exposure windows. The authors
tested these mice on the forced swim task (FST) (6 min total/last 4 mins
scored), one of the most frequently used animal models for measuring
depressive states (Can et al., 2012; Slattery and Cryan, 2012). Gesta-
tional BPA treatment at both doses increased immobility time in both
male and female mice, indicating a depressive phenotype (Xu et al.,
2012). Lactational exposure alone produced this effect only at the
larger dose of BPA in both sexes, suggesting a stronger gestational effect
(Xu et al., 2012). Identical outcomes in males and females in both ge-
stational and lactational BPA exposure do not suggest a sex bias,
counter to what is observed in the clinical literature.

Yet, a growing body of literature (Chen et al., 2014; Fujimoto et al.,
2006; Xu et al., 2011) seems to suggest that BPA exposure disrupts
depressive behavior more in males than in females, an emergent feature
in clinical research (Harley et al., 2013; Perera et al., 2016; Perera
et al., 2012). For example, adult (80-day-old) male and female offspring
of Sprague-Dawley females injected with BPA (2 μg/kg/day; s.c.) from
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GD 10 to PD 7 were tested in the FST (Chen et al., 2014). Compared to
vehicle, BPA treatment in males significantly raised immobility time in
the FST; however, females were unaffected by this treatment (Chen
et al., 2014). This indicates that low doses of BPA are enough to in-
crease depressive symptoms in adulthood of males, suggesting a greater
sensitivity in males. This work is supported by others using the same
methods as the aforementioned work (Chen et al., 2014); however,
administration was through an oral route (Chen et al., 2015). A low
2 μg/kg/day BPA dose in the same exposure window (GD 10 to PD 7)
and day of testing (PD 80) was evaluated in Sprague-Dawley male rats
in the FST (Chen et al., 2015). BPA-treated males exhibited greater
immobility time compared to controls (Chen et al., 2015) in accordance
with previous findings (Chen et al., 2014). This suggests the mode of
BPA administration in this exposure window does not alter the FST
depressive phenotypes in males of this age. Unfortunately, because the
authors did not include females, sex comparisons cannot be made, but
their results do agree with previous findings (Chen et al., 2015). Fuji-
moto and colleagues (Fujimoto et al., 2006) are supportive of the prior
work, although a greater BPA concentration was utilized and exposure
window, species, and age of testing differed. To this end, 9-week-old
male and female Wistar rats were exposed to perinatal BPA (15 μg/kg/
day; oral administration) from GD 13 to PD 0 (Fujimoto et al., 2006).
Results of the FST (15 min) revealed that exposure to BPA increased
diving in females, often considered an active behavior, and reduced
limb movement in males. Though the authors did not find a sex dif-
ference in immobility duration, BPA reduced the active movement of
limbs in males, suggesting a depressive state.

Other depressive assessments have been used to evaluate perinatal
BPA-exposure in male and female rodents, yet these findings are less
clear. In the sucrose preference test, used as an indicator of anhedonia,
a decrease in sucrose intake is indicative of a decreased ability to ex-
perience pleasure (Liu et al., 2018). Interestingly, one sucrose pre-
ference study (0.1% solution) observed no effects in males and a de-
pressive phenotype in females (Hass et al., 2016). Male (~9 months)
and female (~14 months) offspring of Wistar rats were treated with
BPA (2 mL/kg/day) by oral gavage from GD 7 to PD 22 (Hass et al.,
2016). BPA exposure in females decreased preference for sucrose;
however, no effects were seen in the male offspring (Hass et al., 2016).
Notably, the difference found in treatment groups between sexes could
potentially be attributed to age at testing (males at 9 months and fe-
males at 14 months) rather than sex as a biological variable.

However, recent work using sucrose preference is in disagreement
with these findings. The male and female offspring (42, 70, and
140 days old), of Sprague-Dawley dams were exposed to BPA in
drinking water (0 or 0.1 mg/L) from GD 11 to PD 21 (Xu et al., 2011).
The authors tested these animals at a sucrose concentration of 15%.
BPA-treated males displayed increases in sucrose intake at 70 and
140 days of age. This BPA exposure was enough to produce long-lasting
anti-depressive effects in males. In females, BPA treatment decreased
intake at PD 42 and PD 140 (Xu et al., 2011), suggesting anhedonia, in
support of prior work (Hass et al., 2016).

Collectively, both anxiety and depressive behavioral studies are
incongruent. Clearly, future studies are needed to elucidate the re-
lationship of perinatal exposure to BPA and sex as a biological variable.
Yet, review of the literature may suggest that perinatal BPA exposure
results in more depressive phenotypes in males, perhaps only margin-
ally. Undoubtedly, the association between perinatal BPA exposure and
affective disorders is complex. Nevertheless, the behavioral data largely
indicates that during critical windows of exposure, BPA may perma-
nently alter adult behaviors associated with depressive and anxious
states.

4. BPA and neurotransmitter systems

The alterations in behavioral endpoints induced by perinatal BPA
exposure likely translate to underlying disruptions in neuroanatomical

development. Estrogen is critical to the regulation of neuronal system
function. Within the brain, despite substantial overlap, two estrogen
receptor subtypes, ERα and ERβ, have distinct distributions and den-
sities (Shughrue et al., 1997). Notably, these receptors are located in
areas critically involved in the stress response. For example, ERα, but
not ERβ, is present in the central and basal lateral amygdala; yet ERβ,
but not ERα, is found in the paraventricular nucleus of the hypotha-
lamus (Shughrue et al., 1997). Both receptors are found in the bed
nucleus of the stria terminalis, locus coeruleus, and hippocampus
(Shughrue et al., 1997). Within these brain regions, BPA can act on
nuclear hormone receptors expressed in neurons of various phenotypes.
Thus, it is likely that the neurobiological effects of BPA are occurring
through dysregulation of neurotransmitter system sensitivity to endo-
crine disruption. Moreover, differences in distribution and density of
ERα and ERβ in specialized brain regions may lead to alterations in the
activity of neurons depending on the amount of endocrine disruption.
Thus, because studies of perinatal BPA exposure yield quite different
responses in behavior, this may depend on region and neuronal phe-
notype in the brain examined.

4.1. Serotonergic system

BPA interacts with neurotransmitter systems in complex ways. A
key neurotransmitter system that significantly affects anxiety and de-
pressive phenotypes is the serotonergic (5HT) system. 5HT is thought to
mediate mood by way of several serotonergic projections originating
from the 5HT-producing raphe nucleus (Consolazione et al., 1984;
Fibiger and Miller, 1977; Köhler and Steinbusch, 1982; Larsen et al.,
1996; Li et al., 2001; Molliver, 1987; Petrov et al., 1994; Van Bockstaele
et al., 1993). 5HT also plays a critical role in brain development. Al-
terations in 5HT signaling during the developmental period can result
in the establishment of lifelong mood disorders. Specifically, decreasing
expression of or inhibiting 5-HT1A autoreceptors on raphe neurons
during the first few weeks of life, and subsequently increasing ser-
otonergic neuron excitability during this period, results in increased
negative valence behaviors associated with anxiety in adulthood (Gross
et al., 2002; Iacono and Gross, 2008; Richardson-Jones et al., 2011).
Thus, exposure to BPA during this critical period is of great interest.

Prior literature reports that maternal BPA exposure affects 5HT, the
5HT transporter SLC6A4, and 5-hydroxyindole-3-acetic acid (5HIAA) in
rodent models in a variety of brain regions involved in mood (Honma
et al., 2006; Kawai et al., 2007; Matsuda et al., 2010; Nakamura et al.,
2010). Less is known about the impact of perinatal BPA exposure on the
dorsal raphe specifically, yet previous literature does appear to provide
some global analysis. Kawai et al. (2007) administered oral BPA at
2 ng/g/day from GD 11 to GD 17 to pregnant ICR mice and sacrificed
offspring at weeks 9 and 13. Although dorsal raphe 5HT and serotonin
transporter–positive cells tend to increase in ICR male mice exposed to
BPA, it did not reach significance, suggesting potential increases in 5HT
synthesis and metabolism (Kawai et al., 2007). However, a particularly
notable study administered 20 μg/kg/day BPA s.c. to ICR/Jcl dams
from GD 0 to PD 21 (Nakamura et al., 2010). Male and female offspring
were sacrificed at either week 3 or weeks 14–15 to evaluate 5HT and its
metabolite in the dorsal raphe (Nakamura et al., 2010). No differences
were reported at week 3; however, at weeks 14–15 levels of 5HT were
significantly greater in BPA-treated mice regardless of sex (Nakamura
et al., 2010). However, 5HT and 5-HIAA levels were greater in females
compared to males (Nakamura et al., 2010). Collectively, although both
studies observed an increase in 5HT in BPA-treated males (Kawai et al.,
2007; Nakamura et al., 2010), the magnitude of this effect was greater
in BPA-treated females (Nakamura et al., 2010) suggesting a model of
antidepressant behavior in females (McDevitt and Neumaier, 2011).
Work by Honma et al. (2006) did not evaluate the dorsal raphe speci-
fically but revealed increases in 5HT in the forebrain of BPA-exposed
females. The authors assessed the female offspring of Sprague-Dawley
dams orally administered with BPA (4 mg/kg/day) from GD 6 to PD 20

K.R. Wiersielis, et al. Neurotoxicology and Teratology 79 (2020) 106884

5



(Honma et al., 2006). Significant increases in both 5HT and 5HIAA
were reported in BPA-treated females (Honma et al., 2006). This out-
come also supports an antidepressant phenotype in BPA-treated females
as conditional suppression of 5-HT1A heteroreceptors in the forebrain
fosters depressive behaviors (Richardson-Jones et al., 2011). Thus,
previous literature appears to suggest that perinatal BPA exposure may
contribute to 5HT dysregulation that would promote mood disorders
later in life depending on sex.

4.2. Norepinephrine system

One of the most prominent systems involved in arousal is the nor-
epinephrine (NE) system. A key nucleus involved in this system is the
locus coeruleus, comprised of NE-synthesizing cells that project widely
throughout the brain and play a critical role in arousal and the stress
response (Aston-Jones and Waterhouse, 2016; Bangasser et al., 2016;
Loughlin et al., 1982). The locus coeruleus projects to many brain re-
gions that mediate mood such as the cortex, hippocampus, amygdala,
thalamus, and hypothalamus (Eschenko et al., 2012; Swanson and
Hartman, 1975). Developmental BPA exposure may dysregulate neu-
rotransmission in this system, promoting severe disruptions in anxiety
behavior. Similar to the serotonergic system, previous literature reveals
differences based on sex. A key study exposed C57BL/6J dams to oral
BPA (500μg/kg/day) from GD 0 to week 3 and sacrificed male and
female offspring at various time points to evaluate the rate-limiting
enzyme in NE synthesis, tyrosine hydroxylase-immunoreactive cells in
the locus coeruleus (Tando et al., 2014). In BPA-exposed females sa-
crificed at both week 3 and 8, the number of tyrosine hydroxylase-
immunoreactive cells was decreased in the locus coeruleus compared to
same-sex controls (Tando et al., 2014). Yet, in males exposed to BPA,
although no significant difference was reported at week 3, an increase
in these cells was observed at week 8 (Tando et al., 2014). This may
suggest that perinatal BPA exposure may apply sex-specific estrogenic
action of locus coeruleus NE biosynthesis, suppression in males and
enhancement in females. Interestingly, perinatal exposure to BPA alters
the size of the locus coeruleus depending on sex (Fujimoto et al., 2007).
Fujimoto and colleagues (Fujimoto et al., 2007) evaluated male and
female Wistar rats exposed to BPA from GD 0 to PD 21 at various do-
sages –1500, 300, or 30 μg/kg/day– that were sacrificed during weeks
14–20. As expected, baseline locus coeruleus size had a greater re-
presentation in females than in males; however, at all three BPA con-
centrations, locus coeruleus size increased in males and decreased in
females (Fujimoto et al., 2007). This outcome implies that perinatal
BPA exposure reverses basal locus coeruleus sexual dimorphism, which
would shift BPA-exposed males more easily into a state of hyperarousal,
a key symptom in anxiety disorders.

4.3. GABAergic system

Gamma-aminobutyric acid (GABA) is the primary inhibitory neu-
rotransmitter in the mature brain and is thought to be involved in mood
regulation (Kalueff and Nutt, 1996). GABA has prominent connections
throughout the brain (Di Chiara et al., 1979; Freund and Antal, 1988;
Gritti et al., 1994; Gunn et al., 2015; Harandi et al., 1987; Kirouac et al.,
2004); however, little is known about this system and its relationship to
perinatal BPA exposure. Yet, one such study suggests this EDC may
disrupt the development of the GABAergic system or impede GABAergic
responses (Zhou et al., 2011). Sprague-Dawley dams were exposed to
BPA (2 μg/kg/day; s.c.) from GD 10 to PD 7 (Zhou et al., 2011). In BPA-
treated male offspring (PD 28), glutamic acid decarboxylase 67
(GAD67), an enzyme that catalyzes the decarboxylation of glutamate to
GABA, is reduced in the basal lateral amygdala (Zhou et al., 2011).
Although only males were evaluated, this indicates that basal lateral
amygdala GABAergic neurons may be a target for BPA action. Given
that GABAergic transmission in the amygdala is a critical modulator of
anxiety levels, alterations of GAD67 in this region may modify

inhibitory synaptic transmission (Heldt et al., 2012). The decrease in
basal lateral amygdala GABA levels would lead to resting basal lateral
amygdala hyperactivity that would lower the threshold of activation,
which would ultimately generate an anxiety response.

Interestingly, one notable study does report sex differences after
perinatal BPA exposure (Ogi et al., 2015). C57BL/6J dams were orally
administered (500 μg/kg/day) from GD 0 to week 3 (Ogi et al., 2015).
In males (sacrificed at week 16), GABA levels in the amygdala were
reduced when compared to same-sex controls (Ogi et al., 2015), sup-
porting findings from Zhou et al. (2011). Surprisingly, an increase in
GABA was observed in BPA-treated females (sacrificed at week 14) in
this region (Ogi et al., 2015), suggesting resiliency. Moreover, females
exposed to BPA had an increase in GABA in several regions critically
involved in arousal and mood, the locus coeruleus and dorsal raphe,
respectively (Ogi et al., 2015). An increase in GABA in the locus coer-
uleus would suggest a reduction in arousal in these females as locus
coeruleus GABAergic neurons are a key source of inhibition for locus
coeruleus noradrenergic signaling (Breton-Provencher and Sur, 2019).
Also, because serotonergic dorsal raphe neurons receive GABAergic
inputs, GABA, therefore, regulates the excitability of these neurons
(Hernández-Vázquez et al., 2019). Indeed, the dysregulation of dorsal
raphe GABAergic signaling is associated with the development of an-
xiety and depressive disorders (Hernández-Vázquez et al., 2019). To
that end, because females are typically more susceptible to mood and
anxiety-related disorders, these findings suggest BPA may have neuro-
protective properties in females. Although limited in scope, emerging
literature does indicate that GABAergic signaling is affected by peri-
natal BPA exposure in a sex-specific manner, underlying the importance
of future investigations.

5. Intersection of BPA, stress, and neurochemical and behavioral
endpoints

Not only is BPA one of the most controversial EDCs, little is known
about the impact of BPA on the stress system. Many behaviors that
evaluate anxiety and depression are also controlled by brain regions
involved in the stress response that can also be influenced by estrogens.
For example, ovarian hormones are reported to increase HPA axis ac-
tivity, as well as augment the HPA axis response to stress (Roy et al.,
1999). The behavioral evidence in the aforementioned anxiety and
depressive BPA exposure studies suggests that the stress response may
play a key role. Because anxiety and depression are critically linked to
stress, disruption in the stress system by BPA may generate or exacer-
bate clinical symptoms. Although many of the behavioral studies are
incongruent, there does appear to be a relationship between perinatal
BPA exposure and disruptions in stress-related behavioral endpoints.

Many brain regions that are involved in anxiety and depression that
are influenced by estrogens are also regulators of the HPA axis (Walf
and Frye, 2006). Dysregulation in HPA axis function is associated with
many disorders that affect mood and arousal (Jokinen and Nordström,
2008; Shea et al., 2005). Influence by BPA on these regions may se-
verely dysregulate functioning. Only recently have researchers begun to
explore the direct effects of BPA on the HPA axis (Chen et al., 2014;
Kitraki et al., 2015; Panagiotidou et al., 2014; Poimenova et al., 2010;
Zhou et al., 2015). Poimenova et al. (2010) first reported the associa-
tion between perinatal BPA exposure and dysregulation of the HPA axis
in Wistar rats by investigating organizational effects of low dose BPA
exposure on glucocorticoid-regulated responses. Dams received BPA
(40 μg/kg/day; oral administration) during the entire gestational and
lactational period and their male and female offspring were evaluated
at 46 days old (Poimenova et al., 2010). Under basal conditions, BPA-
exposed females had greater plasma corticosterone (CORT) concentra-
tions than control females, as well as BPA-exposed males (Poimenova
et al., 2010). No differences in CORT were observed in males under
basal conditions. This sex difference in basal CORT concentrations is
typically observed after puberty (Senčar-Čupović and Milković, 1976).
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This suggests the estrogen-mimicking action of BPA on the adrenals in
females resulted in earlier onset of this sex difference. Indeed, the
presence of estrogens impacts plasma CORT. For example, ovariectomy
of adult rats decreases CORT levels and estradiol replacement recovers
these levels to control values (Burgess and Handa, 1992; Viau and
Meaney, 1991). In contrast to BPA-exposed males, the authors revealed
that BPA-exposed females had reduced basal hippocampal glucocorti-
coid receptors (GRs), a mediator of HPA axis negative feedback
(Poimenova et al., 2010). This sex difference could also point to es-
trogenic properties of BPA. Female rats treated with estrogen have a
slower glucocorticoid feedback and a downregulation of GR expression
compared to ovariectomized controls (Burgess and Handa, 1992, 1993;
Turner, 1990; Viau and Meaney, 1991). The estrogenic properties in
BPA-exposed males may have been countered by the presence of an-
drogens. Previous orchiectomy/replacement literature suggests andro-
gens have an inhibitory effect on HPA axis activity (Handa et al.,
1994b; McCormick et al., 1998; Viau and Meaney, 1996). Subsets of
these animals were placed in mild stressful conditions (Y maze testing;
4 h intertrial delay) and sacrificed immediately after. After stress, CORT
concentrations were greater in both BPA-exposed male and female rats,
compared to controls. Although baseline CORT levels in males did not
differ based on treatment, after stress CORT was increased in BPA-ex-
posed males suggesting this mild stressor was enough to overcome the
HPA inhibitory properties of androgens (Poimenova et al., 2010).
Moreover, post-stress GR levels were increased in BPA-exposed females
only compared to their baseline. The increase in GR expression would
seemingly cause an abnormality in HPA negative feedback as is typical
in many stress-associated disorders such as depression and PTSD
(Liberzon et al., 1999). Collectively, these results suggest BPA-induced
CORT secretion may be derived from a form of the two hit stress model
(Peña et al., 2017), such that an early life BPA stress followed by a
second hit of stress triggers heightened CORT responses.

Follow up work was conducted by this group (Panagiotidou et al.,
2014), using the same rat strain and BPA dose and administration
procedures as previously described (Poimenova et al., 2010). In concert
with their previous findings (Poimenova et al., 2010), under basal
conditions, BPA-exposed females had higher CORT concentrations
compared to control females and BPA-exposed males (Panagiotidou
et al., 2014). The increased basal CORT levels in BPA-exposed females
coincided with heavier adrenals (Panagiotidou et al., 2014) a measure
not included in their prior work (Poimenova et al., 2010). Because the
morphological and functional development of the fetal adrenal cortex is
dependent on placental estrogen (Kaludjerovic and Ward, 2012), it is
likely that xenoestrogens, such as BPA, interferes with this process.
Unlike the mild form of stress and blood collection timepoint under-
taken in their prior work (Poimenova et al., 2010), the authors utilized
a more severe form of stress, 15 min of forced swim, and evaluated
CORT concentrations 30, 60, and 120 min after stress (Panagiotidou
et al., 2014). Following this stressor, BPA-exposed females demon-
strated a blunted CORT response at 30 and 60 min compared with fe-
males that were vehicle exposed. This blunted CORT response signifies
decreased stress sensitivity in BPA-treated females. Conversely, stressed
BPA-exposed males exhibited greater CORT levels at 30 and 120 min in
contrast to BPA-exposed females. Under non-BPA conditions, stress
typically generates greater CORT release for a longer time period in
female rather than male rodents (Handa et al., 1994a; Iwasaki-Sekino
et al., 2009; Kitay, 1961; Viau et al., 2005). While the authors did not
examine hippocampal GR expression, stressed BPA-exposed females did
not downregulate GR in the hypothalamus in contrast to their vehicle
exposed same-sex counterparts. Dysregulation of GRs in both of these
regions is often found in stress based disorders. Affective disorders have
been associated with both decreased glucocorticoid negative feedback
(Young et al., 1991) and enhanced glucocorticoid negative feedback
(Yehuda et al., 1993).

Kitraki et al. (2015) expanded on their previous work by utilizing
46 day-old male hippocampal tissue from their earlier project

(Panagiotidou et al., 2014) to pinpoint their increased BPA-induced
stress susceptibility. Recall that the hippocampus (Smith and Vale,
2006; van Haarst et al., 1997) is an important regulator of the HPA axis.
To this end, GR function relies on transcriptional co-regulators, such as
FK506 binding protein 5 (Fkbp5). Interestingly, the authors observed
that BPA exposure lead to hippocampal Fkbp5 (FK506-binding protein
5) gene hypermethylation and decreased Fkbp5 mRNA (Kitraki et al.,
2015). This suggests that perinatal BPA exposure in males results in
epigenetic changes in genes critical to the stress response. Moreover,
this group identified the effects of perinatal BPA exposure on Fkbp5 was
blocked by ERβ knockdown (Kitraki et al., 2015). This indicates a
prominent role of ERβ in facilitating BPA influence on Fkbp5 and
consequent stress responsivity.

Recent work by Zhou et al. (2015) in female Sprague-Dawley rats
(PD 40–50), were exposed to BPA in the same dosage and method de-
scribed above (Panagiotidou et al., 2014; Poimenova et al., 2010). BPA-
treated females exhibited hyperactivity in HPA axis activity and com-
promised GR-mediated negative feedback regulation (Zhou et al.,
2015). This outcome was supported by an anxiogenic phenotype in
both the OFT and EPM; decreased time spent in the center zone and a
decreased percentage of time spent in the open arms, respectively
(Zhou et al., 2015). A downregulation in GR function suggests a specific
impairment on the feedback regulatory part of the HPA axis, which
would translate to an altered affective state. The authors confirmed
dysregulation of the GR-mediated feedback response, by utilizing syn-
thetic CORT dexamethasone, a potent GR agonist (Zhou et al., 2015).
BPA-treated females demonstrated hyposensitivity to the agonist in-
dicating downregulation of functional HPA feedback inhibition (Zhou
et al., 2015). In contrast to the prior findings (Panagiotidou et al., 2014;
Poimenova et al., 2010), the increased stress sensitivity in BPA-treated
females (Zhou et al., 2015) is supported by previous anxiogenic phe-
notypes observed in clinical studies (Braun et al., 2009), as well as in
rodents (Kundakovic et al., 2013; Xu et al., 2012).

Developmental alterations in central stress system responses may
contribute to long-term changes in adaptive responses to stress (Levine,
2005). For instance, during early postnatal periods, maternal separation
stress is enough to induce long-term changes in CRF system dysregu-
lation in the adult (Plotsky and Meaney, 1993). Thus, another me-
chanism of action that may contribute to BPA's relationship to stress is
the alteration of CRF neuron number in stress-related brain regions
during the perinatal period. In particular, BPA may be obstructing or
mirroring the mechanisms of endogenous gonadal hormones. Because
estrogen is involved in the organization of the brain during develop-
ment, BPA may contribute to the abnormal development of CRF neu-
rons in brain regions that regulate the stress response. Indeed this ap-
pears to be the case in the bed nucleus of the stria terminalis (BNST)
(Funabashi et al., 2004), a region critical to the stress response (Gray
et al., 1993). For instance, BPA may contribute to the apoptotic de-
crease of BNST CRF neurons in females, as well as an increase in CRF
neurons in males (Funabashi et al., 2004). It may be easy to speculate
that this method of action may be occurring in other brain regions,
perhaps to the noradrenergic cells of the locus coeruleus. Recall that
developmental exposure to BPA increases locus coeruleus size in males,
but decreases locus coeruleus size in females (Fujimoto et al., 2007).
The increased locus coeruleus size in males may contribute to heigh-
tened arousal states.

There is a significant overlap between the stress system and the
neurotransmitter systems affected by BPA. BPA is recognized to disrupt
sex steroid levels and may consequently affect functional connectivity
among these systems. Moreover, because many of the neurotransmitter
systems that are affected by BPA are also severely affected by stress and
CRF, it may be possible that prior BPA exposure could exacerbate the
stress response, thereby more easily shifting humans into anxious or
depressive states. Notably, in males and females, the up-regulation of
CRF and ERα are detected in affective disorders (Bao et al., 2005).
Thus, these alterations likely translate to anxiety and depressive
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symptomology.

6. Conclusions

A considerable number of affective disorders may originate during
the perinatal period. The previous literature suggests perinatal BPA
exposure during critical windows of development critically alters cen-
tral nervous system function. Many of these disorder's symptoms in
adulthood may be exacerbated by the combined influence of stress and
BPA exposure. The literature in BPA effects on the brain and behavior
remain incongruent. This may be due to BPA's weak binding affinity for
estrogen receptors ERα and ERβ coupled with agonist and antagonist
features (Kuiper et al., 1998; Rubin et al., 2006). Rather, some effects
may be driven by non-classical interaction with the estrogen receptor.
Alternatively, one could attribute outcomes to a non-monotonic feature
of BPA such that low dose effects appear, disappear at mid-range, and
potentially re-emerge at higher doses.

Yet, a growing number of studies in animal models support that
developmental BPA exposure contributes to the dysregulation of neu-
rotransmitter systems and disruptions in behaviors assessing mood and
arousal (Ishido et al., 2004; Kawai et al., 2007; Miyatake et al., 2006;
Mizuo et al., 2004; Nakamura et al., 2010; Narita et al., 2007; Ogi et al.,
2015; Suzuki et al., 2003; Tando et al., 2014). Recently, more evidence
has been derived from clinical work that supplements these findings
(Braun et al., 2009; Evans et al., 2014; Harley et al., 2013; Perera et al.,
2012). During the critical window of development, dysregulation in
HPA or CRF system programming may be due to maternal BPA ex-
posure (Levine et al., 1967; Weinstock, 2008). Additionally, during this
period gonadal steroids are known to alter HPA axis activity in a sex-
specific manner in adulthood (Patchev et al., 1995). However, the
mechanisms contributing to BPA and stress effects on mood and arousal
are unclear. One such mechanism could be the BPA influence on re-
ceptor upregulation or downregulation in stress-related brain regions.

Our review emphasizes the importance of an expanded investigation
into the detrimental effects of perinatal BPA exposure, in concert with,
the stress response. To date, there is very little work that combines BPA
and stress exposure. Although the effects of perinatal BPA exposure on
HPA axis and central CRF system regulation are understudied, BPA
exposure may induce a greater stress sensitivity in adulthood.
Accordingly, neurotransmitter systems that modulate stress re-
sponsivity may become dysregulated by perinatal BPA exposure re-
sulting in an increased likelihood of developing stress-related psychia-
tric disorders. This BPA-induced dysregulation likely yields a greater
magnitude of behavioral disruption depending on sex, although more
research is needed to tease out a sex difference. Nevertheless, our re-
view suggests that perinatal BPA exposure alters systems sensitive to
stress and endocrine disruption that translate to anxious and depressive
states later in life.
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